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AIM: To develop and evaluate predictive models for in-hospital mortality in burn patients using machine learning (ML) techniques.
METHODS: A retrospective cohort study was conducted using data from burn patients admitted to Ankara Bilkent City Hospital Burn
Treatment Center between 2015 and 2020. Key variables including age, gender, total body surface area burned, burn depth, burn type,
inhalation injury, inflammatory markers and inflammatory indexes were collected. Seven ML models—Logistic Regression, Random
Forest, Support Vector Machine, Decision Tree, K-Nearest Neighbors, Naive Bayes, and Gradient Boosting—were trained and evaluated.
RESULTS: The cohort included 218 patients (mean age 42.5± 18.5 years; 69.7%male, 30.3% female), with an in-hospital mortality rate
of 18.8% (n = 41). Logistic Regression had the best performance (accuracy: 88.6%, Receiver Operating Characteristic (ROC)-AreaUnder
Curve (AUC): 0.906), while Random Forest achieved the highest accuracy (90.9%) and recall (97.2%). K-Nearest Neighbors excelled in
recall (99.0%), Gradient Boosting balanced precision and recall (91.6% each, ROC-AUC: 0.744), and Support Vector Machine showed
moderate results (accuracy: 84.0%, ROC-AUC: 0.864).
CONCLUSIONS: ML models, particularly Logistic Regression and Random Forest, demonstrated strong predictive capabilities for
mortality in burn patients. This study supports the potential for ML in burn care, offering a data-driven approach for personalized
prognosis and clinical decision-making. Further multicenter validation is recommended.
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Introduction
Burn injuries remain one of the most severe and life-
threatening forms of trauma, with an estimated annual mor-
tality of 180,000 cases worldwide according to the World
Health Organization (WHO) [1]. Burn injuries remain one
of the most complex and life-threatening types of trauma,
necessitating timely and accurate assessment to inform clin-
ical decision-making [2]. Mortality risk prediction is a cru-
cial aspect of burn care, guiding treatment plans and re-
source allocation in critical settings. Traditionally, scores
such as the Baux and revised Baux scores have been uti-
lized to estimate mortality risk by considering factors like
patient age, total body surface area (TBSA) burned, and the
presence of inhalation injury [3–5]. Although these meth-
ods are practical and straightforward, they may be limited
in scope, as they rely on a restricted set of variables andmay
not fully capture the nuanced clinical profile of each burn
patient [6,7].
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Recent advancements in machine learning (ML) have
opened new avenues for enhancing predictive modeling in
healthcare, offering a data-driven approach that can incor-
porate complex, multi-dimensional patient data. In contrast
to traditional scores, which rely on fixed assumptions, ML
algorithms discover patterns by analyzing the data directly.
As demonstrated in other medical domains, such as oncol-
ogy and sepsis prediction, ML has shown promise in im-
proving outcome predictions and tailoring care approaches
through more sophisticated analysis [8,9].
This study aims to evaluate the performance of various ML
models—including Logistic Regression, Random Forest,
Support Vector Machine, Decision Tree, K-Nearest Neigh-
bors, Naive Bayes, and Gradient Boosting—in predicting
in-hospital mortality among burn patients. By leveraging
ML’s ability to integrate complex, multi-dimensional data,
we aim to develop tools capable of enhancing real-time clin-
ical decision-making in modern intensive care unit (ICU)
workflows.

Materials and Methods
This study was conducted to develop and evaluate predic-
tive models for in-hospital mortality in burn patients using
a retrospective cohort design. The study included all burn
patients admitted and hospitalized in Ankara Bilkent City
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Hospital Burn Treatment Center between 2015 to 2020. Pa-
tients under 18 years old and patients with incomplete data
were excluded. Data were extracted from the hospital’s
electronic health records, focusing on a comprehensive set
of variables that could potentially influence mortality out-
comes. This study was conducted in accordance with the
principles outlined in the Declaration of Helsinki. Ethical
approval was granted by the Ankara Bilkent City Hospital
Institutional Ethical Review Board on 10 November 2021,
with the approval number E2-21-927.
This retrospective study incorporated demographic vari-
ables (gender, age), burn injury characteristics (TBSA, burn
depth, burn agent type, presence of inhalation injury), and
admission laboratory values to predict in-hospital mortal-
ity. Laboratory parameters included C-reactive protein
(CRP), delta neutrophil index (DNI), lymphocyte count,
monocyte count, neutrophil count, lactate dehydrogenase
(LDH), albumin, aspartate aminotransferase (AST), alanine
aminotransferase (ALT), alkaline phosphatase (ALP), and
gamma-glutamyl transferase (GGT), all measured on ad-
mission. To further capture systemic inflammation and
physiological stress, derived prognostic ratios were cal-
culated, including neutrophil-to-lymphocyte ratio (NLR),
lymphocyte-to-monocyte ratio (LMR), CRP-to-albumin ra-
tio (CRP/Alb), DNI-to-albumin ratio (DNI/Alb), and CRP-
to-lymphocyte ratio (CRP/Lymph). The binary outcome
variable, in-hospital mortality, was defined as survival (0)
or death (1). All variables were extracted from electronic
health records, with no missing data due to institutional
completeness protocols.
Sevenmachine learning algorithms were implemented: Lo-
gistic Regression (LR), Random Forest (RF), Support Vec-
tor Machine (SVM), Decision Tree (DT), K-Nearest Neigh-
bors (KNN), Naive Bayes (NB), and Gradient Boosting
(GB). These models were selected to encompass diverse
algorithmic approaches, including linear, tree-based, and
instance-based methods. Data preprocessing included stan-
dardization of features using StandardScaler to ensure com-
parability across scales. Mortality was stratified across
training (60%), validation (20%), and test (20%) sets to pre-
serve class distribution.
Hyperparameter optimization was conducted via grid
search with 5-fold stratified cross-validation on the train-
ing set. Key tuned parameters included regularization
strength (C) for LR, tree depth (max_depth) and ensem-
ble size (n_estimators) for RF and GB, and kernel type for
SVM. Model performance was evaluated on validation and
test sets using accuracy, precision, recall, F1 score, and
area under the receiver operating characteristic curve (Re-
ceiver Operating Characteristic (ROC)-Area Under Curve
(AUC)). Calibration curves (Supplementary Fig. 1) and
decision curve analysis (Supplementary Fig. 2) were em-
ployed to assess probabilistic calibration and clinical utility,
respectively.
Feature importance was analyzed through permutation im-
portance for non-tree models (LR, SVM) and intrinsic

Gini importance for tree-based algorithms (RF, GB, DT)
(Supplementary Data 1). Statistical comparisons of cross-
validated AUC-ROC scores were performed using De-
Long test. All analyses were executed using Python (ver-
sion 3.12, Python Software Foundation, Wilmington, DE,
USA), leveraging pandas for data manipulation, scikit-
learn for model implementation and evaluation, and mat-
plotlib/seaborn for visualization. A p value lower than 0.05
was considered statistically significant.

Results
This study included 218 burn patients. Demographical and
clinical information of the patients are presented in Table 1.

Table 1. Demographical and clinical data.
Parameter Result

Age (years) 42.5 ± 18.5

Gender
Male 69.7% (n = 152)
Female 30.3% (n = 66)

Total Length of Stay (Days) 15.5 (7–35)
Intensive Care Unit Length of Stay (Days) 7 (3–19)
Mortality 18.8% (n = 41)
Total Body Surface Area Burned (%) 16.50 (5.00–35.00)

Burn Depth

Superficial 1.4% (n = 3)
Partial Thickness 45.4% (n = 99)
Full Thickness 28.0% (n = 61)
Deep 25.2% (n = 55)

Burn Agent

Flame 16.5% (n = 36)
Arc 6.0% (n = 13)
Scald Burn 33.5% (n = 73)
Steam 8.7% (n = 19)
Electrical 15.1% (n = 33)
Chemical 9.6% (n = 21)
Cold 1.4% (n = 3)
Burning Agent 9.2% (n = 20)

Inhalation Burn 9.2% (n = 20)

Arc, Arc Flash. Categorical data is presented as percent (count).
Numerical data is presented as mean ± standard deviation or me-
dian (interquartile range).

Laboratory data at admission are presented in Table 2.
The cross-validation results for the seven machine learning
models are presented in Table 3. Validation set results are
also provided in Supplementary Data 2. Among these,
the Random Forest classifier achieved the highest overall
classification accuracy (0.909), coupled with strong recall
(0.972) and the top F1 Score (0.945). Logistic Regres-
sion, on the other hand, exhibited the most favorable dis-
criminative performance as indicated by its highest ROC-
AUC value (0.906), alongside robust accuracy (0.886), pre-
cision (0.942), recall (0.916), and F1 Score (0.929) (Table 3,
Fig. 1).
Additionally, we evaluated model calibration and clini-
cal utility across all classifiers. Supplementary Fig. 1
presents the calibration curves based on the test set, com-
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Table 2. Laboratory data.
Parameter Value

CRP (mg/dL) 22.15 (2.75–82.75)
Lymphocyte (×109/L) 1.45 (1.06–2.12)
Monocyte (×109/L) 0.64 (0.45–0.88)
Neutrophil (×109/L) 9.14 (5.93–14.88)
LDH (U/L) 300.50 (227.75–456.25)
Albumin (g/L) 37.50 (31.00–43.00)
AST (U/L) 32.00 (21.75–53.00)
ALT (U/L) 27.00 (19.00–40.25)
ALP (U/L) 72.00 (57.75–94.00)
GGT (U/L) 22.00 (14.00–38.25)
CRP to Albumin 0.62 (0.06–2.35)
DNI to Albumin 0.0033 (0.0024–0.0656)
CRP to Lymphocyte 14.29 (0.92–56.67)
LMR 2.48 (1.45–3.70)
NLR 6.10 (3.45–11.33)
DNI (%) 0.10 (0.10–2.03)
Numerical data is presented as median (interquartile
range). CRP, C-reactive protein; LDH, lactate de-
hydrogenase; AST, aspartate aminotransferase; ALT,
alanine aminotransferase; ALP, alkaline phosphatase;
GGT, gamma-glutamyl transferase; DNI, delta neu-
trophil index; LMR, lymphocyte-to-monocyte ratio;
NLR, neutrophil-to-lymphocyte ratio.

paring the mean predicted probabilities against the fraction
of positive outcomes. Most models showed reasonable cal-
ibration, with Logistic Regression and Support Vector Ma-
chine demonstrating the closest adherence to ideal calibra-
tion across the prediction range. Supplementary Fig. 2
displays the Decision Curve Analysis (DCA) based on the
test set, illustrating the net benefit of each model across
different threshold probabilities. The majority of mod-
els maintained positive net benefit values within the lower
threshold ranges (0.0–0.4).
Support Vector Machine demonstrated balanced metrics
(accuracy = 0.840, precision = 0.914, recall = 0.888, F1
Score = 0.901, ROC-AUC = 0.864), whereas the Decision
Tree classifier showed notable recall (0.944) and precision
(0.918), resulting in a strong F1 Score (0.931). However,
its ROC-AUC (0.784) was comparatively lower. K-Nearest
Neighbors achieved the highest recall (0.990), while also
maintainingmoderate accuracy (0.863) and a solid F1 Score
(0.923). Naive Bayes performed adequately, with an accu-
racy of 0.840, precision of 0.939, recall of 0.861, F1 Score
of 0.898, and ROC-AUC of 0.857. Lastly, Gradient Boost-
ing demonstrated balanced accuracy, precision, and recall
(0.863, 0.916, and 0.916, respectively), though it exhibited
a relatively modest ROC-AUC of 0.744. Confusion matri-
ces are presented in Fig. 2.

Discussion
Burn injuries represent a complex clinical challenge, with
mortality risk influenced by dynamic interactions between
systemic inflammation, physiological reserve, and injury

severity. This retrospective cohort study of 218 adult
burn patients (2015–2020) leverages ML to integrate mul-
tidimensional predictors—including demographic factors,
burn characteristics, admission laboratory profiles, and
novel inflammatory ratios—into prognostic models for
in-hospital mortality. By evaluating seven ML algo-
rithms, we demonstrate that Logistic Regression (ROC-
AUC: 0.906) and Random Forest (accuracy: 0.909, re-
call: 0.972) achieved robust predictive performance, out-
performing conventional metrics in sensitivity while main-
taining clinical interpretability.
Our results align with prior study such as Yeh et al. [10],
who investigated AI andMLmodels in burn patients to pre-
dict adverse outcomes, including the need for graft surgery
and prolonged hospital stays. Yeh et al. [10] found
that Random Forest provided the highest AUC (81.1%
for prolonged hospital stay and 78.8% for graft require-
ment), while extreme Gradient Boosting (XGBoost) per-
formed best for adverse outcomes (AUC 87.2%). The di-
vergence in model performance between their work and
ours—particularly the lower AUCs in their study—may
reflect fundamental differences in outcome heterogeneity.
Their simultaneous evaluation of multiple endpoints (graft-
ing, prolonged stay) likely introduced competing risks and
diluted model specificity, whereas our focus on mortality
as a singular endpoint allowed for optimized feature align-
ment. Similarly, Park et al.’s [11] work on critically ill burn
patients demonstrated strong predictive accuracy for Ran-
dom Forest, achieving an AUC of 0.922 for 90-day mor-
tality, reinforcing the value of Random Forest in our study
as well, where it produced the highest ROC-AUC among
models, indicating robust predictive power. While they re-
ported a higher AUC for Random Forest (0.922 vs. 0.795
in our study), this divergence likely reflects critical differ-
ences in cohort severity and outcome definitions. Their co-
hort exclusively analyzed critically ill surgical patients with
substantially larger burns (mean TBSA 38.5% in survivors
vs. 16.5% in our cohort) and a higher prevalence of in-
halation injuries (31% vs. 9.2% in our study), factors that
inherently amplify the predictive weight of variables like
TBSA and American Society of Anesthesiologists Physi-
cal Status (ASA-PS) in their models. Furthermore, their
focus on 90-day mortality—capturing delayed postopera-
tive complications—contrasts with our in-hospital mortal-
ity endpoint, which prioritizes acute physiological derange-
ments reflected in admission inflammatory markers. This
distinction is evident in feature importance: their RF model
emphasized perioperative factors (TBSA, Red Blood Cell
Distribution Width (RDW), ASA-PS), whereas ours high-
lighted inflammatory ratios (NLR, CRP/albumin), suggest-
ing that outcome timing shapes predictive variable rele-
vance. The superior AUC of their RF model may also stem
from their larger sample size (n = 731 vs. 218), which better
accommodates tree-based algorithms’ need for data depth
to model complex interactions in high-severity cohorts.
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Table 3. Model metrics of the test set.
Model Accuracy Precision Recall F1 Score ROC-AUC

Logistic Regression 0.886 0.942 0.916 0.929 0.906a

Random Forest 0.909 0.921 0.972 0.945 0.795
Support Vector Machine 0.840 0.914 0.888 0.901 0.864
Decision Tree 0.886 0.918 0.944 0.931 0.784
K-Nearest Neighbors 0.863 0.857 0.990 0.923 0.817
Naive Bayes 0.840 0.939 0.861 0.898 0.857
Gradient Boosting 0.863 0.916 0.916 0.916 0.744
a: p< 0.05 compared to Decision Tree. ROC, Receiver Operating Characteristic; AUC,
Area Under Curve.

Fig. 1. Receiver Operating Characteristic curves of models. ROC, Receiver Operating Characteristic; AUC, Area Under Curve.

In a study by Yazıcı et al. [12], six ML algorithms were
assessed for predicting burn-related mortality based on risk
factors, including age, gender, TBSA, full-thickness burns,
and inhalation injury. Their findings underscored Ad-
aBoost as the top performer, achieving 90% accuracy and
an AUC of 92%, emphasizing age and TBSA as key pre-
dictors [12]. Çinar et al. [13] also conducted a study
involving 1064 patients hospitalized in a burn center be-
tween 2016 and 2022 to predict mortality risk using ma-

chine learning models. They analyzed 40 parameters, in-
cluding demographic and biochemical data, and employed
various machine learning methods, with artificial neural
networks (ANNs) showing the highest accuracy (95.92%)
in predicting outcomes. Their study highlighted the poten-
tial of machine learning in clinical decision support sys-
tems, emphasizing its ability to enhance early and accurate
mortality risk assessment in burn patients [13]. Our find-
ings showed high recall in SVM and K-Nearest Neighbors,
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Fig. 2. Confusion matrices for various machine learning models predicting in-hospital mortality in burn patients. (a) Logistic
Regression, (b) Naive Bayes, (c) K-Nearest Neighbor, (d) Gradient Boosting, (e) Decision Tree, (f) Random Forest, (g) Support Vector
Machine (SVM).
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though with comparatively lower precision and F1 scores.
This difference may stem from our use of indices tied to in-
flammatory markers, a focus that diverges from traditional
predictive parameters and possibly limits precision.
Comparing our findings with Stylianou et al. [14], who
used various ML models such as ANN, RF, and LR for
burn mortality prediction, we observed similarities and dif-
ferences. Stylianou et al.’s study [14] reported ANN as
the best performer for AUC, while RF had a high posi-
tive predictive value despite lower sensitivity. Their ANN
outperformed our Logistic Regression in AUC (0.971 vs.
0.906), but this stark contrast arises from fundamental dif-
ferences in dataset scale and clinical context. Their anal-
ysis of 66,611 patients with a mortality rate of 1.27%—
representing a general burn population—contrasts sharply
with our cohort’s higher acuity (18.8% mortality, median
TBSA 16.5% vs. their 1.5%). The extreme class imbalance
in their data (non-fatal scalds comprising 41% of cases) in-
herently favors ANN’s capacity to detect subtle nonlinear
patterns in low-risk populations, whereas our smaller, high-
severity cohort (predominantly flame/electrical burns) pri-
oritized acute inflammatory derangements captured effec-
tively by interpretable linear models. Furthermore, their
focus on admission-to-discharge mortality prediction using
static variables (age, TBSA, inhalation injury) differs from
our inclusion of dynamic inflammatory ratios, which may
explain RF’s superior sensitivity in our setting. Their opti-
mization for maximum Youden’s index versus our empha-
sis on recall reflects divergent clinical priorities: screening
low-risk populations versus avoiding missed predictions in
critically ill patients.
Sepsis is also a key factor influencing mortality in burn
patients, with conventional sepsis indicators often under-
performing in burn cases. Tran et al. [15] developed
a “machine intelligence learning optimizer” (MILO) for
predicting sepsis in burn patients, comparing it with non-
automated ML methods. In their retrospective analysis of
211 patients, the MILO approach using K-Nearest Neigh-
bors yielded an impressive 90% accuracy and a ROC-AUC
of 0.96, underscoring the potential of advanced ML models
for predicting complications like sepsis with high accuracy
[15].
Another relevant study by Rashidi et al. [16] focused
on early acute kidney injury (AKI) prediction in burn
and trauma patients using biomarkers (e.g., neutrophil
gelatinase-associated lipocalin (NGAL), NT-proBNP, urine
output and creatinine). Their ML models showed that
NGAL, combined with NT-proBNP or creatinine, allowed
AKI prediction up to 61.8 hours earlier than standard crite-
ria. With ML performance improvements, predictive mod-
els using accessible, routinely monitored markers may be-
come more effective in clinical practice [16].
In a recent systematic review by Taib et al. [17], machine
learning models demonstrated sensitivities and specificities
of 92.9% and 93.4%, respectively, for mortality prediction
in burn patients, surpassing themodified Baux score and us-

ing readily available data. This review reinforces the clini-
cal applicability and predictive strength of ML approaches
in managing burn-related mortality [17].
In the literature, ML models demonstrated superior predic-
tive performance compared to the Baux score. In a study
conducted byMaxwell et al. [18] on 100 patients, the ROC-
AUC of the Baux score in predicting mortality was found
to be 0.682 (p < 0.05). Similarly, a 2020 study by Choi et
al. [19] involving 183 burn patients reported a revised Baux
score ROC-AUC of 0.840 for predicting mortality (95%CI:
0.76–0.91, p < 0.001). Fransén et al. [20] explored the
application of machine learning (ML) algorithms for pre-
dicting mortality in burn patients, benchmarking their per-
formance against the established Baux and revised Baux
scores. Using data from 92 patients, ML models such as
ExtremeBoosting, RandomForest, and Support VectorMa-
chine (SVM) achieved an AUC of 0.920, comparable to
the Baux scores, which reached 0.850 and 0.840. No sta-
tistically significant difference was found between the ML
models and the Baux scores, suggesting thatML could offer
similar predictive accuracy within clinical settings. We in-
tentionally adopted an ML-based methodology to explore
the potential for advanced algorithms to match or surpass
conventional predictionmethods, while also broadening the
scope of predictive variables beyond age and TBSA. This
approach allowed us to assess the adaptability and robust-
ness of ML models in real-world clinical data, potentially
uncovering more nuanced insights into mortality risk fac-
tors. Unlike the Baux score, which is limited to age, TBSA,
and inhalation injury, our models and the models in the lit-
erature incorporated additional clinical and laboratory pa-
rameters, potentially providing a more nuanced and indi-
vidualized risk assessment.
Although the findings support the feasibility ofML formor-
tality prediction, limitations—such as the small sample size
and single-center data—highlight the need for further re-
search with larger, multicenter studies to validate these re-
sults across diverse clinical contexts. This work reflects an
ongoing effort to advance predictive modeling in burn care,
where complex models may pave the way for personalized
prognostic tools that can be tailored to modern ICU data
and patient variables. While the models performed well
overall, their applicability to specific subgroups, such as
patients with extensive TBSA burns or severe inhalation in-
juries, requires further investigation. These subgroups of-
ten present unique challenges, including higher mortality
risks and atypical clinical trajectories, which may influence
model performance. Stratified analyses in future studies
could elucidate subgroup-specific model efficacy. Future
research should validate these models using multi-center
datasets to ensure broader applicability across diverse clin-
ical settings.

Conclusions
Our study supports the view that machine learning models,
particularly Logistic Regression and Random Forest, pro-
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vide robust predictive capabilities for mortality in burn pa-
tients. These models have the potential to enhance clinical
decision-making by providing real-time risk assessments
that could guide resource allocation and treatment priori-
tization in intensive care units.
To ensure broader applicability, future efforts should fo-
cus on developing tools tailored for specific patient sub-
groups, such as those with extensive burns, inhalation in-
juries, or significant comorbidities. Integrating these mod-
els into electronic health record systems could facilitate
real-timemortality predictions, enabling personalized treat-
ment strategies and potentially improving outcomes for
high-risk patients. Further multi-center validation studies
are essential to confirm the generalizability of these find-
ings and their clinical impact.
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