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AIM: Lung adenocarcinoma remains a leading cause of cancer-related mortality, and the diagnostic performance of computed tomography
(CT) is limited when dependent solely on human interpretation. This study aimed to develop and evaluate an interpretable deep learning
framework using an attention-enhanced Squeeze-and-Excitation Residual Network (SE-ResNet) to improve automated classification of
lung adenocarcinoma from thoracic CT images. Furthermore, Gradient-weighted Class Activation Mapping (Grad-CAM) was applied
to enhance model interpretability and assist in the visual localization of tumor regions.

METHODS: A total of 3800 chest CT axial slices were collected from 380 subjects (190 patients with lung adenocarcinoma and 190
controls, with 10 slices extracted from each case). This dataset was used to train and evaluate the baseline ResNet50 model as well
as the proposed SE-ResNet50 model. Performance was compared using accuracy, Area Under the Curve (AUC), precision, recall, and
Fl-score. Grad-CAM visualizations were generated to assess the alignment between the model’s attention and radiologically confirmed
tumor locations.

RESULTS: The SE-ResNet model achieved a classification accuracy of 94% and an AUC of 0.941, significantly outperforming the
baseline ResNet50, which had an 85% accuracy and an AUC of 0.854. Grad-CAM heatmaps produced from the SE-ResNet demonstrated
superior localization of tumor-relevant regions, confirming the enhanced focus provided by the attention mechanism.

CONCLUSIONS: The proposed SE-ResNet framework delivers high accuracy and interpretability in classifying lung adenocarcinoma
from CT images. It shows considerable potential as a decision-support tool to assist radiologists in diagnosis and may serve as a valuable
clinical tool with further validation.
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that have demonstrated a survival benefit [6,7]. Despite
its high spatial resolution and rapid acquisition, CT for in-
determinate pulmonary nodules remains challenging when
dependent solely on visual assessment [8]. Significant
inter-reader variability among radiologists and high false-
positive rates in screening settings may result in unneces-
sary anxiety and invasive procedures [9,10]. Consequently,
integrating artificial intelligence (AI) and deep learning
techniques into the radiological workflows has emerged as
a promising strategy to improve diagnostic accuracy, con-

Introduction

Lung adenocarcinoma, the most prevalent histological sub-
type of non-small cell lung cancer (NSCLC), remains a
leading cause of cancer-related morbidity and mortality
worldwide [1,2]. In the United States, lung cancer con-
tinues to be the leading cause of cancer deaths. However,
screening high-risk individuals with low-dose chest com-
puted tomography has been shown to reduce lung cancer

mortality by approximately 20% [3]. The critical role of
early and accurate diagnosis in improving patient outcomes
is well-established, as it facilitates timely surgical or thera-
peutic intervention, significantly improving 5-year survival
rates and reducing the risk of metastasis [4,5].

Computed tomography (CT), particularly low-dose CT
(LDCT), has become the standard modality for thoracic
imaging and is central to lung cancer screening programs
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sistency, and efficiency [11].

Convolutional Neural Networks (CNNs) have achieved re-
markable success across various medical imaging appli-
cations, including diabetic retinopathy in ophthalmology,
skin lesion classification in dermatology, and brain tumor
segmentation from Magnetic Resonance Imaging (MRI)
scans in neuro-oncology [12,13]. These applications en-
compass tumor classification, segmentation, and prognos-
tic modeling. Among these, ResNet (Residual Network)
architectures are particularly valued for their potential to
train very deep models without suffering from vanishing
gradients, achieved through residual skip connections [14].
However, standard CNN models, including ResNet50, may
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have limited capacity to capture inter-channel feature de-
pendencies, potentially overlooking subtle but discrimina-
tive textural and morphological cues needed to differen-
tiate benign and malignant lung tissues [15]. To address
this limitation, recent advances in attention mechanisms
have introduced modules that enhance the model’s focus on
the most informative features. The Squeeze-and-Excitation
(SE) block, which adaptively recalibrates channel-wise fea-
ture responses by explicitly modeling interdependencies
among channels, is a prime example of such mechanisms
[16]. Studies have confirmed that incorporating SE blocks
or similar channel attention modules, such as the Convolu-
tional Block Attention Module (CBAM)), into existing CNN
architectures can selectively amplify relevant features while
suppressing non-informative ones, enhancing representa-
tional power and diagnostic performance [17,18].

In this study, we proposed an attention-enhanced ResNet
framework embedding SE blocks into a ResNet50 back-
bone, for automated classification of lung adenocarcinoma
from CT images. Recognizing the imperative for trans-
parency and trust in clinical Al, we further employed eX-
plainable Al (XAI) methods [19,20]. Specifically, we in-
corporated Gradient-weighted Class Activation Mapping
(Grad-CAM) to visualize the discriminative regions uti-
lized by the model, a widely validated approach for high-
lighting diagnostically relevant features [21]. We com-
pared the performance of the baseline ResNet50 with the
proposed Squeeze-and-Excitation Residual Network (SE-
ResNet) across multiple evaluation metrics, including accu-
racy, precision, recall, F1-score, and Area Under the Curve
(AUC), demonstrating the superior diagnostic performance
and clinical interpretability of our framework.

Methods

In this study, we developed a deep learning pipeline based
on an attention-enhanced residual network to classify lung
adenocarcinoma from CT images. The overall methodol-
ogy included data acquisition and preprocessing, model ar-
chitecture design, training configuration, evaluation proto-
cols, and explainability analysis using Grad-CAM.

Data Collection and Preprocessing

The study population was sourced retrospectively and con-
sisted of 380 subjects in total, comprising a balanced co-
hort of 190 patients with pathologically confirmed lung
adenocarcinoma and 190 non-cancerous control subjects.
For each subject, a standardized set of 10 consecutive 1-
mm axial slices was selected for analysis, resulting in 3800
slices used in this study. In the adenocarcinoma cohort, this
10-slice set was centered on the axial slice displaying the
largest tumor diameter. For the non-cancerous cohort, a
representative slice from the lung parenchyma was used as
the center for the 10-slice set. This entire dataset was parti-
tioned at the subject level to prevent data leakage, creating
a training set (n = 266 subjects; 133 adenocarcinoma, 133

control), a validation set (n = 38 subjects; 19 adenocarci-
noma, 19 control), and a test set (n = 76 subjects; 38 adeno-
carcinoma, 38 control). The complete process from patient
screening to dataset construction is outlined in Fig. 1.

All images were acquired using a 128-slice Siemens SO-
MATOM Definition AS+ scanner (Siemens Healthineers,
Erlangen, Germany) with a standard chest CT protocol
(tube voltage = 120 kVp, tube current modulation = 100—
250 mAs, slice thickness = 1.0 mm, in-plane resolution =
0.625 mm, and matrix size = 512 x 512). Ethical approval
was obtained from the Ethics Committee of Ningbo No.
2 Hospital (Approval No. [YJ-NBEY-KY-2021-087-01]),
and all data were anonymized in compliance with data pro-
tection regulations. The establishment of Ground-truth la-
bels followed a rigorous, multi-stage process. All tumor
regions were independently delineated by two senior tho-
racic radiologists with 10 and 12 years of experience, re-
spectively. In cases of disagreement, a final consensus was
reached through adjudication by a third expert, a senior tho-
racic radiologist with over 20 years of experience and spe-
cialized expertise in pulmonary oncology. The independent
delineations of the two radiologists demonstrated a high de-
gree of concordance, with a mean Intersection over Union
(IoU) of 0.82 across all malignant cases.

The diagnostic reference standard was strictly defined:
all malignant cases (adenocarcinoma) were unequivocally
confirmed by histopathological analysis of surgical or
biopsy specimens, while all negative cases were verified
through longitudinal imaging follow-up for at least two
years, demonstrating either nodule stability or complete res-
olution. To ensure consistency across deep learning mod-
els, all images were resized to 224 x 224 pixels and nor-
malized to a [0, 1] intensity range using min-max nor-
malization. Notably, the full, uncropped axial slices were
used as input for the models. This approach was intention-
ally chosen over a segmentation-based region-of-interest
(ROI) pipeline to evaluate the end-to-end performance of
the model and specifically challenge the attention mech-
anism’s capacity to identify relevant pathological features
within a complex anatomical background.

Given the relatively limited dataset size, data augmenta-
tion techniques were applied to improve the generaliza-
tion capability of the model. These included random ro-
tations within +15°, horizontal and vertical flipping, Gaus-
sian noise injection with a standard deviation range of 0.01—
0.05, and contrast-limited adaptive histogram equalization
(CLAHE). The dataset was divided by patient level into a
training set (70%, n = 266), validation set (10%, n = 38)
and test set (20%, n = 76). One split was performed using a
fixed random seed to ensure subject independence and pre-
vent data leakage.

Baseline Model: ResNet50

As a baseline, we adopted the ResNet50 architecture, a
widely used convolutional neural network recognized for
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Fig. 1. Flowchart of research data acquisition and cohort construction. This diagram illustrates the process from retrospective

subject screening to the final construction of training, validation, and test datasets, with the number of subjects indicated at each stage.

CT, computed tomography.

its residual connections that mitigate the vanishing gradi-
ent challenge in deep networks. The model was initialized
with ImageNet-pretrained weights and fine-tuned on our
dataset. The network was modified to accept single-channel
grayscale CT inputs, and the final fully connected layer was
adapted to produce binary outputs corresponding to adeno-
carcinoma or normal tissue. Model training was conducted
using the PyTorch framework. The binary cross-entropy
loss function was minimized with the Adam optimizer (3
=0.9 and 55 = 0.999). The initial learning rate was set to 1
x 10~ and reduced by a factor of 10 when the validation
loss plateaued for more than five consecutive epochs. Each
model was trained for up to 50 epochs with early stopping
based on validation performance, using a batch size of 32.

Attention-Enhanced Model: SE-ResNet50

To improve the capacity of the model to focus on
channel-wise salient features, we incorporated Squeeze-
and-Excitation (SE) blocks into the ResNet50 architecture.
These blocks were inserted after each residual unit to adap-
tively recalibrate feature responses. The SE module oper-
ates in three sequential steps: squeeze, excitation, and scale.
In the squeeze step, a global average pooling operation is
applied across the spatial dimensions of the feature maps
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to generate a compact channel descriptor. Given a feature
map X € RNC x H x W), the channel-wise descriptor z
is computed as:

1 H W
D) R
i=1 j=1

This descriptor is then passed through two fully connected
layers with ReLU and sigmoid activations, forming the ex-
citation operation:

s =0 (Wsy-ReLU (W - 2))

Where r is the reduction ratio, set to 16 in our implemen-
tation. Finally, in the scale step, the original feature maps
were reweighted using the learned attention vectors:

X, =5.-X,

This operation enabled the model to emphasize the most
informative channels while suppressing less relevant ones,
thus improving representational efficiency without increas-
ing spatial complexity. The overall structure of the pro-
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posed SE-ResNet model is illustrated in Fig. 2. The model
received preprocessed thoracic CT slices as input, pro-
cessed them through a sequence of convolutional and resid-
ual blocks, and integrated SE blocks after key stages to en-
able adaptive channel-wise recalibration. These modules
highlight features critical for distinguishing between malig-
nant and normal tissues. The extracted high-level represen-
tations were then passed through a fully connected layer and
a final softmax classifier to yield the probability of lung ade-
nocarcinoma versus normal tissue. This architecture main-
tains a streamlined and modular design, facilitating both
predictive accuracy and interpretability.

Evaluation Metrics and Training Procedure

To comprehensively evaluate model performance, we com-
puted accuracy, precision, recall (sensitivity), F1-score, and
the area under the receiver operating characteristic curve
(ROC curve). Confusion matrices were also generated to
visualize classification outcomes in terms of true positives,
true negatives, false positives, and false negatives. All ex-
periments were conducted using an NVIDIA RTX 3090
GPU, and each model was trained three times to ensure sta-
tistical robustness. Final metrics were reported as averages
over these runs. The 95% confidence intervals for AUC val-
ues were estimated using the percentile bootstrap method
with 2000 resamples.

Model Interpretability With Grad-CAM

To enhance the interpretability of the model and provide
visual insight into its decision-making process, we ap-
plied Gradient-weighted Class Activation Mapping (Grad-
CAM). This method highlights regions within the input im-
age that contribute most to the predicted class by computing
the gradient of the class score with respect to feature maps in
the final convolutional layer. The resulting heatmaps were
superimposed onto the original CT slices to identify regions
of diagnostic significance and evaluate whether the atten-
tion of the model aligned with known pathological areas.

Reproducibility and Code Availability

The source code and trained model weights supporting the
findings of this study are available from the corresponding
author upon reasonable request and are subject to a material
transfer agreement. Clinical data cannot be publicly shared
due to patient privacy restrictions imposed by the institu-
tional review board.

To ensure methodological transparency and facilitate repli-
cation, we provide the following details of our computa-
tional environment. Hardware: All models were trained
and evaluated on an NVIDIA RTX 3090 GPU. Soft-
ware: Experiments were conducted using Python (v3.8.10,
Python Software Foundation, Beaverton, OR, USA), Py-
Torch (v1.10.1, Meta Al, Menlo Park, CA, USA), CUDA
(v11.3, NVIDIA Corporation, Santa Clara, CA, USA),
Albumentations (v1.1.0, open-source library developed

by Albumentations Team including Alexander Buslaev et
al.), NumPy (v1.21.2, open-source library maintained by
NumPy Steering Council, associated with NumFOCUS,
Austin, TX, USA), and Scikit-learn (v1.0.2, open-source
library maintained by scikit-learn community, associated
with Inria, Saclay, France), and imgaug (v0.4.0, open-
source library developed by Alexander Jung). Random
Seeds: To ensure deterministic results, a global random
seed of 42 was set for PyTorch, NumPy, and Python’s ran-
dom module at the beginning of each experiment.

Results

To evaluate the effectiveness of the proposed SE-ResNet
architecture in classifying lung adenocarcinoma from
CT scans, we conducted a series of experiments com-
paring its performance to a baseline ResNet50 model.
The results demonstrate that incorporating Squeeze-and-
Excitation (SE) blocks significantly improves classification
accuracy and robustness across multiple evaluation metrics.
Fig. 3 illustrates the receiver operating characteristic (ROC)
curves for both models on the test set. The baseline
ResNet50 achieved an Area Under the Curve (AUC) of
0.854 (95% CI, 0.825-0.881), whereas the SE-ResNet
model exhibited a markedly improved and statistically dis-
tinct AUC of 0.941 (95% CI, 0.920-0.962). These findings
indicate that attention-enhanced architecture has a superior
discriminative capability for distinguishing malignant tis-
sue from normal tissue.

For a comprehensive quantitative evaluation, the perfor-
mance of both the baseline ResNet50 and the proposed SE-
ResNet50 was assessed across the training, validation, and
test sets, with detailed metrics presented in Table 1. This
multi-set analysis was crucial for evaluating not only final
model efficacy but also generalization capability. The test
set results reveal a clear performance advantage for the pro-
posed model: the baseline ResNet50 achieved an overall
accuracy of 85% and an AUC of 0.854, whereas the SE-
ResNet model achieved a significantly higher accuracy of
94% and an AUC of 0.941. These consistent improvements
across all test metrics confirm the benefit of channel-wise
attention modeling.

Beyond these final performance scores, the comprehensive
data in Table 1 provide critical insights into model general-
ization. The baseline ResNet50 exhibited a significant per-
formance drop from a training accuracy of 0.96 to a test
accuracy of 0.85, indicating a notable degree of overfitting.
In contrast, the SE-ResNet50 model showed a much smaller
performance gap, declining from a training accuracy of 0.99
to a test accuracy of 0.94. This markedly superior general-
ization underscores the effectiveness of the SE blocks as a
form of architectural regularization, enabling the model to
learn more robust and transferable features while reducing
the risk of overfitting.

To provide a detailed view of classification errors, confu-
sion matrices for both models on the test subset (n = 760)
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Fig. 2. Schematic architecture of the proposed SE-ResNet model for lung adenocarcinoma classification from thoracic CT scans.
The model integrates Squeeze-and-Excitation (SE) blocks into the ResNet50 backbone, enabling adaptive feature recalibration to enhance

discriminative performance. SE-ResNet, Squeeze-and-Excitation Residual Network. Conv, Convolutional.

are presented in Figs. 4,5 (n indicates the number of CT
slices, not the number of patients). The baseline ResNet50
correctly identified 313 negative samples and 319 positive
samples, while misclassifying 67 negatives as positives and
61 positives as negatives. In contrast, the SE-ResNet model
demonstrated improved error control, correctly identifying
350 negatives and 348 positives, with only 30 false pos-
itives and 32 false negatives. This improvement in mis-
classification distribution highlights the enhanced sensitiv-
ity and specificity of the proposed method.

In addition to accuracy-related metrics, we examined the
distribution of model prediction confidence scores across
all test samples (Fig. 6). The histogram illustrates that
the SE-ResNet model tends to produce more polarized
confidence values, with higher certainty for both posi-
tive and negative predictions compared to the baseline
ResNet50. This behavior indicates that the SE-enhanced
model achieves better class separability and generates more
decisive predictions, which is particularly valuable in clin-
ical decision-making scenarios.

To further assess the interpretability of the proposed SE-
ResNet model, we applied Gradient-weighted Class Acti-
vation Mapping (Grad-CAM) to visualize spatial regions
that contributed most significantly to the predictions of the
model. To provide an intuitive, real-world demonstration
of the utility of our model, we presented a representative
clinical case from the test set in Fig. 7. Fig. 7A shows the
original axial CT slice containing a lung adenocarcinoma,
with the ground-truth tumor region delineated by an ex-
pert radiologist. When processed by the baseline ResNet50
(Fig. 7B), the resulting Grad-CAM heatmap was diffuse and
poorly localized. In contrast, when processed by the pro-
posed SE-ResNet model (Fig. 7C), the model correctly clas-
sified the lesion as adenocarcinoma and produced a highly
focused activation map that precisely highlighted the tumor,
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demonstrating strong alignment with expert interpretation
and underscoring its potential as a clinical decision-support
tool.

As illustrated, the baseline ResNet50 frequently generated
diffuse and nonspecific activation maps, often highlighting
broad areas extending beyond tumor boundaries or empha-
sizing unrelated anatomical structures such as the chest wall
or mediastinum. Conversely, the SE-ResNet model consis-
tently produced more compact and sharply localized atten-
tion regions that closely matched the radiologist-identified
lesions. Notably, in correctly classified adenocarcinoma
cases, SE-ResNet Grad-CAM maps exhibited high spa-
tial concordance with annotated tumor areas, effectively
capturing peripherally located nodules, spiculated margins,
and heterogeneous intensities, features of high clinical rel-
evance for lung adenocarcinoma diagnosis.

To quantify the alignment between model attention and ra-
diological ground truth, we computed the average Intersec-
tion over Union (IoU) between Grad-CAM heatmaps and
expert-annotated tumor regions (Fig. 8). The SE-ResNet
achieved a higher average IoU of 0.75 compared to 0.68 for
the baseline ResNet50. This quantitative result further sup-
ports that channel-wise attention improves not only classifi-
cation performance but also the spatial reliability of model
explanations.

Overall, these findings indicate that the SE-ResNet model
enhances the extraction of salient diagnostic features from
CT images while providing more reliable and interpretable
predictions suitable for clinical decision support.

Discussion

In this study, we developed and evaluated an attention-
enhanced convolutional neural network, SE-ResNet, for au-
tomated classification of lung adenocarcinoma from tho-
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Fig. 3. Receiver operating characteristic (ROC) curves comparing baseline ResNet50 and SE-ResNet models on the test set. The
baseline ResNet50 achieved an Area Under the Curve (AUC) of 0.854 (95% CI: 0.825-0.881), while the SE-ResNet achieved an AUC
0f 0.941 (95% CI: 0.920-0.962). Confidence intervals were estimated using 2000 bootstrap resamples.

Table 1. Comparative performance of baseline ResNet50 and attention-enhanced SE-ResNet50 across training and test sets.

Model Data set Accuracy  Precision  Recall  Fl-score
. Training set 0.96 0.95 0.97 0.96
Baseline ResNet50
Test set 0.85 0.82 0.84 0.83
Training set 0.99 0.98 0.99 0.98
SE-ResNet50
Test set 0.94 0.92 0.92 0.92

racic CT images. Compared to the baseline ResNet50
model, the proposed architecture demonstrated marked im-
provements across all key performance metrics [22], in-
cluding accuracy, precision, recall, F1-score, and Area Un-
der the Curve (AUC). These findings provide strong evi-
dence that integrating Squeeze-and-Excitation (SE) blocks
into conventional residual networks significantly enhances
the capacity of the model to focus on diagnostically relevant
features, consistent with reports from other medical imag-
ing domains [23].

It is important to clarify the scope of our contribution
within the context of surgical decision support. While our
framework does not perform surgical staging or assess re-
sectability, it addresses the foundational prerequisite for
such downstream tasks: the accurate and reliable identi-
fication of lung adenocarcinoma. In the clinical pathway,
a confident radiological diagnosis, supported by objective

and interpretable evidence, is the critical trigger for initiat-
ing surgical consultation and planning. By providing not
only a highly accurate classification but also interpretable
visual evidence via Grad-CAM aligned with expert annota-
tions, our model aims to enhance the quality and confidence
of the radiological reports informing surgical teams. There-
fore, while not a comprehensive surgical planning solution,
this work represents a tangible step toward strengthening
the data-driven foundation upon which surgical decisions
are ultimately based.

One of the major challenges in thoracic imaging is the sub-
tle and heterogeneous presentation of early-stage lung ade-
nocarcinoma, which often exhibits complex radiological
features [24]. Traditional radiological assessment, though
grounded in human expertise, is prone to significant inter-
reader variability, even among experienced specialists [9].
Our results indicate that deep learning models, especially
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Fig. 4. Confusion matrix of the baseline ResNet50 model.

those augmented with attention mechanisms, can capture
fine-grained radiological patterns that may be overlooked,
serving as an effective second reader [25]. SE blocks, in
particular, allowed the network to learn inter-channel de-
pendencies, leading to stronger class-discriminative feature
representations. This was evidenced in the significantly
higher AUC (0.941 vs. 0.854) and reduced false positives
and negatives, addressing key limitations in diagnostic Al
[10].

Beyond improving classification accuracy, the SE-ResNet
model exhibited more confident and polarized predictions,
as evidenced by the distribution of confidence scores. Com-
pared to the baseline, SE-ResNet produced clearer separa-
tion between high- and low-confidence outputs, suggesting
better-calibrated decision boundaries and reduced model
ambiguity [26]. This behavior is highly valuable in clini-
cal practice, where well-calibrated, high-confidence predic-
tions can support stronger diagnostic decisions, while low-
confidence outputs can appropriately flag cases for further
human review [27].
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The application of Grad-CAM further strengthened the in-
terpretability and clinical trustworthiness of our proposed
model [19]. Visual inspection of Grad-CAM heatmaps re-
vealed that the SE-ResNet model not only improved classi-
fication accuracy but also exhibited more anatomically and
pathologically meaningful attention. In many cases, the at-
tention maps of the model closely aligned with radiologist-
annotated tumor regions, suggesting its potential for inte-
gration into radiological workflows to provide real-time vi-
sual cues, an approach increasingly advocated in human-
Al collaboration [28]. To quantitatively evaluate the spa-
tial reliability of model attention, we computed the av-
erage Intersection over Union (IoU) between Grad-CAM
heatmaps and expert-annotated tumor regions. The SE-
ResNet achieved a higher average IoU of 0.75, compared
to 0.68 for the baseline ResNet50. This metric objectively
supports the qualitative Grad-CAM findings and reinforces
that SE-based attention mechanisms not only enhance pre-
diction accuracy but also align more closely with radiologi-
cally relevant anatomy. Such alignment is critical for build-
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Fig. 5. Confusion matrix of the SE-ResNet model.

ing clinical trust and facilitating the adoption of Al-assisted
diagnostic tools [29].

To better understand model limitations, we performed a ret-
rospective analysis of misclassified test set cases. Among
the 30 false positives (non-cancerous slices classified as
adenocarcinoma), most (60%, 18/30) were focal inflamma-
tory lesions or granulomas, which frequently exhibit high
density and irregular margins resembling malignancy. An-
other subset (27%, 8/30) involved post-inflammatory scar-
ring or atelectasis. Regarding the 32 false negative cases
(adenocarcinoma slices classified as non-cancerous), le-
sion subtlety was the primary challenge. A substantial
proportion (62.5%, 20/32) consisted of pure ground-glass
nodules (GGOs) with low attenuation, while others (25%,
8/32) were small nodules (<6 mm) adjacent to pulmonary
vessels, posing a significant challenge for differentiation.
These findings suggest that future model improvements
should focus on enhancing specificity against inflammatory
mimics and improving sensitivity for subtle, low-density le-
sions.

Our findings align with a growing body of literature high-
lighting the value of attention mechanisms in medical image
analysis [30]. Prior studies have successfully implemented
attention-based networks for CT-based lung cancer detec-
tion [31], brain tumor segmentation from MRI [13], and
breast lesion classification in mammography [32]. While
several studies have investigated attention-augmented net-
works for CT-based lung cancer diagnosis, our findings
further reinforce their effectiveness in thoracic imaging
[13,33]. By focusing specifically on CT data, this study
contributes robust evidence supporting the integration of
attention mechanisms into widely adopted imaging modal-
ities for pulmonary oncology.

Despite the promising results, several limitations must be
acknowledged. First, while our IoU analysis provides a
measure of localization on radiological images, a direct
comparison with co-registered histopathology slides, the ul-
timate ground truth, was not performed due to the technical
complexities of image registration. This remains a critical
avenue for future validation. Second, the dataset used in
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Fig. 6. Distribution of predicted confidence scores. Histogram of prediction confidence values for all test samples. The SE-ResNet
model demonstrates more polarized outputs, indicating stronger class separability compared to the baseline ResNet50.

C

Fig. 7. Representative Gradient-weighted Class Activation Mapping (Grad-CAM) visualisations comparing expert annotation
and model attention mechanisms. (A) Original CT slice with red circles indicating pathologically confirmed tumour regions. (B) Grad-
CAM heatmap from baseline ResNet50 showing diffusion of attention mechanisms. (C) Grad-CAM heatmap from SE-ResNet showing
more focused attention mechanisms, aligned to the real tumour region. Red areas indicate higher class activation.

this study was acquired from a single institution, which may
limit the generalizability of the model across different scan-
ners and patient populations, a well-recognized challenge in
medical Al development [34]. Third, although SE blocks
improved performance, other advanced attention mecha-
nisms, such as self-attention or transformer-based architec-
tures, may yield even greater gains and warrant further in-
vestigation [35]. Fourth, while Grad-CAM provides valu-
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able insights, its resolution is inherently coarse and may not
capture voxel-level pathology, suggesting that a more fine-
grained saliency approach, such as Score-CAM or Eigen-
CAM, should be explored in future work [36].

Additionally, our current evaluation was performed at the
slice level, which, while appropriate for initial benchmark-
ing, does not fully capture the clinical decision-making pro-
cess that relies on patient-level diagnosis [37]. In real-
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Grad-CAM Heatmap Coverage with Expert Annotations
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Fig. 8. Alignment of model attention with expert annotations measured by Intersection over Union (IoU). This figure compares
the average IoU between Grad-CAM heatmaps and expert-annotated tumor regions for the baseline ResNet50 and the proposed SE-

ResNet. The higher IoU of the SE-ResNet model correlates with its superior classification performance and indicates more reliable

model interpretability.

world practice, radiologists assess multiple slices, consid-
ering spatial continuity and contextual cues across entire
scans. Future research should extend the proposed frame-
work to aggregate predictions across all slices belonging
to the same patient using techniques such as max-pooling,
weighted fusion, or more sophisticated temporal modeling
approaches, including Long Short-Term Memory (LSTM)
networks [38]. Such patient-level classification strategies
will be essential for translating this model into clinically
actionable tools [39].

Furthermore, as a technical proof-of-concept focused solely
on image-based classification, this study did not incorpo-
rate detailed patient characteristics, such as specific tumor
subtypes, treatment modalities, or comorbidities, into the
model. This is a recognized limitation, as these clinical
variables are critical for a comprehensive diagnostic and
prognostic assessment. While this was beyond the scope
of our current algorithmic investigation, future research

should prioritize the development of multi-modal fusion
models. Integrating the proposed deep learning framework
with structured clinical data from electronic health records
(EHR) represents a crucial next step to enhance model ro-
bustness and create tools more closely aligned with the
holistic clinical decision-making process [40,41].

Conclusions

This study developed and validated an attention-enhanced
deep learning framework, SE-ResNet, for the classifica-
tion of lung adenocarcinoma from thoracic CT images.
By incorporating Squeeze-and-Excitation (SE) blocks, the
SE-ResNet model significantly outperformed the baseline
ResNet50, achieving an accuracy of 94% and an AUC
of 0.941. Moreover, the application of Grad-CAM pro-
vided valuable visual interpretability, demonstrating that
the decision-making process of the model aligns with clin-
ically relevant tumor regions, thereby enhancing its trust-

1215 Ann. Ital. Chir, 96,9, 2025
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worthiness. Collectively, these findings establish the SE-
ResNet framework as a robust and interpretable approach
for automated lung adenocarcinoma classification. It shows
significant potential as a clinical decision-support tool de-
signed to assist radiologists in improving the accuracy and
efficiency of thoracic CT interpretation. Future research
should focus on validating the model using multi-center
datasets, extending the approach to 3D volumetric inputs,
and integrating additional clinical variables to enable more
comprehensive diagnostic decision-making.

Availability of Data and Materials

The source code and trained model weights supporting the
findings of this study are available from the corresponding
author upon reasonable request and are subject to a material
transfer agreement. Clinical data cannot be publicly shared
due to patient privacy restrictions imposed by the institu-
tional review board.

Author Contributions

QS and YL designed the research study; JL and HH per-
formed the research and data collection; QS analyzed the
data and drafted the initial manuscript. QS, YL, JL, HH
contributed to critical revision of the manuscript for im-
portant intellectual content, read and approved the final
manuscript, agreeing to be accountable for all aspects of
the work.

Ethics Approval and Consent to Participate

Ethical approval was obtained from the Ethics Committee
of Ningbo No. 2 Hospital (Approval No. [YJ-NBEY-KY-
2021-087-01]). The study was conducted in accordance
with the principles of the Declaration of Helsinki. Due to
the retrospective nature of the study, informed consent was
waived and all data were anonymised in compliance with
data protection regulations.

Acknowledgment
Not applicable.

Funding

This research was supported by the Medical Scientific
Research Foundation of Zhejiang Province (Grant No.
2020KY838) and the Ningbo Natural Science Foundation
(Grant No. 2024J335).

Conflict of Interest

The authors declare no conflict of interest.

References

[1] BrayF, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram
1, et al. Global cancer statistics 2022: GLOBOCAN estimates of in-

cidence and mortality worldwide for 36 cancers in 185 countries.
CA: a Cancer Journal for Clinicians. 2024; 74: 229-263. https:

//doi.org/10.3322/caac.21834.

1216  Ann. Ital. Chir, 96,9, 2025

—
5%}
—

[8

[l

[9

—

[10]

[11]

[12]

[13]

[14]

[16]

[17]

[18

=

Mattiuzzi C, Lippi G. Cancer statistics: a comparison between World
Health Organization (WHO) and Global Burden of Disease (GBD).
European Journal of Public Health. 2020; 30: 1026—1027. https://do
1.org/10.1093/eurpub/ckz216.

Bandi P, Star J, Ashad-Bishop K, Kratzer T, Smith R, Jemal A. Lung
Cancer Screening in the US, 2022. JAMA Internal Medicine. 2024;
184: 882—891. https://doi.org/10.1001/jamainternmed.2024.1655.
Saman H, Raza A, Patil K, Uddin S, Crnogorac-Jurcevic T. Non-
Invasive Biomarkers for Early Lung Cancer Detection. Cancers.
2022; 14: 5782. https://doi.org/10.3390/cancers14235782.

Bolowia NF. Computed Tomography (CT) Scans: Advancements
in Oncology Diagnosis and Treatment. Derna Academy Journal for
Applied Sciences. 2025; 3: 140—147. https://doi.org/10.71147/t415y
s60.

De Koning HJ, van der Aalst CM, Ten Haaf K, Oudkerk M. PL02.05
Effects of Volume CT Lung Cancer Screening: Mortality Results of
the NELSON Randomised-Controlled Population Based Trial. Jour-
nal of Thoracic Oncology. 2018; 13: S185. https://doi.org/10.1016/

j.jtho.2018.08.012.

Krist AH, Davidson KW, Mangione CM, Barry MJ, Cabana M,
Caughey AB, et al. Screening for Lung Cancer. Journal of the Amer-
ican Medical Association. 2021; 325: 962-970. https://doi.org/10.
1001/jama.2021.1117.

MacMahon H, Austin JHM, Gamsu G, Herold CJ, Jett JR, Naidich
DP, et al. Guidelines for management of small pulmonary nod-
ules detected on CT scans: a statement from the Fleischner Soci-
ety. Radiology. 2005; 237: 395-400. https://doi.org/10.1148/radiol
.2372041887.

Kim H, Park CM, Kim SH, Lee SM, Park SJ, Lee KH, et al. Persistent
pulmonary subsolid nodules: model-based iterative reconstruction
for nodule classification and measurement variability on low-dose
CT. European Radiology. 2014; 24: 2700-2708. https://doi.org/10.
1007/s00330-014-3306-7.

van Leeuwen KG, Schalekamp S, Rutten MJCM, van Ginneken
B, de Rooij M. Artificial intelligence in radiology: 100 com-
mercially available products and their scientific evidence. Euro-
pean Radiology. 2021; 31: 3797-3804. https://doi.org/10.1007/
s00330-021-07892-z.

Yu S, Mahil A. Introduction to Al in Radiology. Artificial Intelli-
gence in Clinical Medicine. 2023; 318-320.

Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo
M, Chou K, et al. A guide to deep learning in healthcare.
Nature Medicine. 2019; 25: 24-29. https://doi.org/10.1038/
s41591-018-0316-z.

Hatamizadeh A, Nath V, Tang Y, Yang D, Roth HR, Xu D. Swin
UNETR: Swin transformers for semantic segmentation of brain tu-
mors in MRI images. International MICCAI BrainLes Workshop
(pp. 272-284). Springer: Cham, Switzerland. 2021.

He K, Zhang X, Ren S, Sun J. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (pp. 770-778). 2016.

Li X, Li M, Yan P, Li G, Jiang Y, Luo H, et al. Deep learning at-
tention mechanism in medical image analysis: Basics and beyonds.
International Journal of Network Dynamics and Intelligence. 2023;
93-116. https://doi.org/10.53941/ijndi0201006.

Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2018.

Woo S, Park J, Lee J, Kweon IS. CBAM: Convolutional block atten-
tion module. In Proceedings of the European conference on computer
vision (ECCV) (pp. 3-19). 2018.

Painuli D, Bhardwaj S, Kose U. Recent advancement in cancer diag-
nosis using machine learning and deep learning techniques: A com-
prehensive review. Computers in Biology and Medicine. 2022; 146:
105580. https://doi.org/10.1016/j.compbiomed.2022.105580.


https://doi.org/10.3322/caac.21834
https://doi.org/10.3322/caac.21834
https://doi.org/10.1093/eurpub/ckz216
https://doi.org/10.1093/eurpub/ckz216
https://doi.org/10.1001/jamainternmed.2024.1655
https://doi.org/10.3390/cancers14235782
https://doi.org/10.71147/t415ys60
https://doi.org/10.71147/t415ys60
https://doi.org/10.1016/j.jtho.2018.08.012
https://doi.org/10.1016/j.jtho.2018.08.012
https://doi.org/10.1001/jama.2021.1117
https://doi.org/10.1001/jama.2021.1117
https://doi.org/10.1148/radiol.2372041887
https://doi.org/10.1148/radiol.2372041887
https://doi.org/10.1007/s00330-014-3306-7
https://doi.org/10.1007/s00330-014-3306-7
https://doi.org/10.1007/s00330-021-07892-z
https://doi.org/10.1007/s00330-021-07892-z
https://doi.org/10.1038/s41591-018-0316-z
https://doi.org/10.1038/s41591-018-0316-z
https://doi.org/10.53941/ijndi0201006
https://doi.org/10.1016/j.compbiomed.2022.105580

[19]

[20

[21]

[22]

(23]

[24]

[25]

[26

[27

[29]

[30

[31]

Hongbo Huang, et al.

He Y. Diving deep: The role of deep learning in medical image
analysis, today and tomorrow. In Proceedings of the 2024 9th Inter-
national Conference on Intelligent Informatics and Biomedical Sci-
ences (ICIIBMS) (pp. 537-540). 2024.

Garg A, Singh A, Kumar A. Mental disorders management using ex-
plainable artificial intelligence (XAI). Explainable Artificial Intelli-
gence for Biomedical and Healthcare Applications (pp. 113-138).
CRC Press: Boca Raton, FL, USA. 2024.

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D.
Grad-CAM: Visual explanations from deep networks via gradient-
based localization. In Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV) (pp. 618-626). 2017.

Miller RA. Reference standards in evaluating system performance.
Journal of the American Medical Informatics Association: JAMIA.
2002; 9: 87-88. https://doi.org/10.1136/jamia.2002.0090087.
Shamshad F, Khan S, Zamir SW, Khan MH, Hayat M, Khan FS,
et al. Transformers in medical imaging: A survey. Medical Image
Analysis. 2023; 88: 102802. https://doi.org/10.1016/j.media.2023.
102802.

Xu'Y, Sun H, Zhang Z, Song A, Wang W, Lu X. Assessment of Re-
lationship Between CT Features and Serum Tumor Marker Index in
Early-stage Lung Adenocarcinoma. Academic Radiology. 2016; 23:
1342-1348. https://doi.org/10.1016/j.acra.2016.06.005.

Léang K, Josefsson V, Larsson AM, Larsson S, Hogberg C, Sartor
H, et al. Attificial intelligence-supported screen reading versus stan-
dard double reading in the Mammography Screening with Artifi-
cial Intelligence trial (MASAI): a clinical safety analysis of a ran-
domised, controlled, non-inferiority, single-blinded, screening ac-
curacy study. The Lancet. Oncology. 2023; 24: 936-944. https:
//doi.org/10.1016/S1470-2045(23)00298-X.

Pernot P. Calibration in machine learning uncertainty quantification:
Beyond consistency to target adaptivity. APL Machine Learning.
2023; 1. https://doi.org/10.1063/5.0174943.

Ouanes K, Farhah N. Effectiveness of Artificial Intelligence (AI)
in Clinical Decision Support Systems and Care Delivery. Jour-
nal of Medical Systems. 2024; 48: 74. https://doi.org/10.1007/
s10916-024-02098-4.

Soomro TA, Zheng L, Afifi AJ, Ali A, Soomro S, Yin M, et al. Image
Segmentation for MR Brain Tumor Detection Using Machine Learn-
ing: A Review. IEEE Reviews in Biomedical Engineering. 2023; 16:
70-90. https://doi.org/10.1109/RBME.2022.3185292.

Ghassemi M, Hightower M, Nsoesie EO. Settling the score on
algorithmic discrimination in health care. New England Journal
of Medicine Al. 2024; 1: 731-733. https://doi.org/10.1056/Al1
p2400583.

Gupta S, Sharma S, Sharma R, Chandra J. Healing with hierarchy:
Hierarchical attention empowered graph neural networks for pre-
dictive analysis in medical data. Artificial Intelligence in Medicine.
2025; 165: 103134. https://doi.org/10.1016/j.artmed.2025.103134.
Tang T, Zhang R, Lin K, Li F, Xia X. SM-RNet: A scale-aware-
based multiattention-guided reverse network for pulmonary nodules

[32]

[33]

[34]

[33]

[36]

[37]

[38]

[39]

[40]

[41]

segmentation. [EEE Transactions on Instrumentation and Measure-
ment. 2023; 72: 1-14.

Kuttan GO, Elayidom MS. Review on Computer Aided Breast Can-
cer Detection and Diagnosis using Machine Learning Methods on
Mammogram Image. Current Medical Imaging. 2023; 19: 1361-
1371. https://doi.org/10.2174/1573405619666230213093639.
Zhang Y, Feng W, Wu Z, Li W, Tao L, Liu X, ef al. Deep-Learning
Model of ResNet Combined with CBAM for Malignant-Benign Pul-
monary Nodules Classification on Computed Tomography Images.
Medicina (Kaunas, Lithuania). 2023; 59: 1088. https://doi.org/10.
3390/medicina59061088.

Liu H, Cai H, Yang D, Zhu W, Wu G, Chen J. Learning pyramidal
multi-scale harmonic wavelets for identifying the neuropathology
propagation patterns of Alzheimer’s disease. Medical Image Analy-

sis. 2023; 87: 102812. https://doi.org/10.1016/j.media.2023.102812.
Aburass S, Dorgham O, Al Shagsi J, Abu Rumman M, Al-

Kadi O. Vision Transformers in Medical Imaging: a Compre-
hensive Review of Advancements and Applications Across Mul-
tiple Diseases. Journal of Imaging Informatics in Medicine. 2025;
10.1007/s10278-10.1007/s10278-025-01481—y. https://doi.org/10.
1007/s10278-025-01481-y.

Singh A, Mishra D. CoBooM: Codebook guided bootstrapping for
medical image representation learning. Lecture Notes in Computer
Science (pp. 23-33). Springer: Cham, Switzerland. 2024.

Calli E, Sogancioglu E, van Ginneken B, van Leeuwen KG, Murphy
K. Deep learning for chest X-ray analysis: A survey. Medical Image
Analysis. 2021; 72: 102125. https://doi.org/10.1016/j.media.2021.
102125.

Takahashi K, Usuzaki T, Inamori R. Vision Transformer-based Deep
Learning Models Accelerate Further Research for Predicting Neu-
rosurgical Intervention. Radiology. Artificial Intelligence. 2024; 6:
€240117. https://doi.org/10.1148/ryai.240117.

Wang LV, Gao L. Photoacoustic microscopy and computed tomog-
raphy: from bench to bedside. Annual Review of Biomedical Engi-
neering. 2014; 16: 155-185. https://doi.org/10.1146/annurev-bioen
¢-071813-104553.

Wang H, Subramanian V, Syeda-Mahmood T. Modeling uncertainty
in multi-modal fusion for lung cancer survival analysis. In Proceed-
ings of the 2021 IEEE 18th International Symposium on Biomedical
Imaging (ISBI) (pp. 1169-1172). 2021.

Da-Ano R, Tankyevych O, Andrade-Miranda G, Prasoon A, Meri-
audeau F, Chen T, et al. Multi-modal PET/CT fusion for automated
PD-L1 status prediction in lung cancer. In Proceedings of the 2024
IEEE International Symposium on Biomedical Imaging (ISBI) (pp.
1-5). 2024.

© 2025 The Author(s).

(0@

1217  Ann. Ital. Chir., 96,9, 2025


https://doi.org/10.1136/jamia.2002.0090087
https://doi.org/10.1016/j.media.2023.102802
https://doi.org/10.1016/j.media.2023.102802
https://doi.org/10.1016/j.acra.2016.06.005
https://doi.org/10.1016/S1470-2045(23)00298-X
https://doi.org/10.1016/S1470-2045(23)00298-X
https://doi.org/10.1063/5.0174943
https://doi.org/10.1007/s10916-024-02098-4
https://doi.org/10.1007/s10916-024-02098-4
https://doi.org/10.1109/RBME.2022.3185292
https://doi.org/10.1056/AIp2400583
https://doi.org/10.1056/AIp2400583
https://doi.org/10.1016/j.artmed.2025.103134
https://doi.org/10.2174/1573405619666230213093639
https://doi.org/10.3390/medicina59061088
https://doi.org/10.3390/medicina59061088
https://doi.org/10.1016/j.media.2023.102812
https://doi.org/10.1007/s10278-025-01481-y
https://doi.org/10.1007/s10278-025-01481-y
https://doi.org/10.1016/j.media.2021.102125
https://doi.org/10.1016/j.media.2021.102125
https://doi.org/10.1148/ryai.240117
https://doi.org/10.1146/annurev-bioeng-071813-104553
https://doi.org/10.1146/annurev-bioeng-071813-104553
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods
	Data Collection and Preprocessing
	Baseline Model: ResNet50
	Attention-Enhanced Model: SE-ResNet50
	Evaluation Metrics and Training Procedure
	Model Interpretability With Grad-CAM
	Reproducibility and Code Availability

	Results
	Discussion
	Conclusions
	Availability of Data and Materials
	Author Contributions
	Ethics Approval and Consent to Participate
	Acknowledgment
	Funding
	Conflict of Interest

