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AIM: Hepatocellular carcinoma (HCC) remains a significant global health concern, often diagnosed at advanced stages, limiting the
efficacy of surgical interventions. Early and accurate diagnosis is critical for improving surgical outcomes and reducing mortality.
Traditional biomarkers, such as alpha-fetoprotein (AFP), des-gamma-carboxyprothrombin (DCP), and the lectin-bound fraction of AFP
(AFP-L3), show limited sensitivity and specificity. Advanced diagnostic models, including GALAD, TAGALAD, and GAP_TALAD,
offer a promising multi-biomarker approach but lack extensive evaluation in surgical contexts.

METHODS: This retrospective study included a cohort of 267 untreated hepatocellular carcinoma patients and 231 control patients (with
hepatitis or cirrhosis). We applied the predefined formulas for the TAGALAD, GAP_TALAD, and other models to the cohort data. The
diagnostic performance of each model and individual biomarker for detecting HCC was assessed using receiver operating characteristic
(ROC) curve analysis to determine the area under the curve (AUC), sensitivity, and specificity at optimal cut-offs. Additionally, key
clinical subgroups, including pathologically confirmed HCC, clinically diagnosed HCC, early-stage HCC (TNM I+II), patients with
complete data (no imputation), and hepatitis B virus (HBV)-related disease, were also analyzed.

RESULTS: TAGALAD and GAP_TALAD demonstrated superior performance compared to the GALAD model and traditional biomark-
ers across all patient subgroups. Notably, TAGALAD achieved the highest diagnostic accuracy, with an AUC of 0.880, sensitivity of
0.760, and specificity of 0.861, followed closely by GAP_TALAD (AUC = 0.874). Both models demonstrated excellent performance in
early-stage HCC detection (TAGALAD AUC = 0.860, GAP_TALAD AUC = 0.867), highlighting their potential in identifying candi-
dates for surgical resection or transplant at an early curative stage. In HBV-related HCC, TAGALAD (AUC = 0.874) and GAP_TALAD
(AUC =0.857) showed superior diagnostic accuracy compared to GALAD (AUC =0.731) and single biomarkers (AUC = 0.598-0.799).
CONCLUSIONS: The TAGALAD and GAP_TALAD models offer a robust and reliable framework that supports early diagnosis of HCC.
Their superior accuracy indicates a more reliable foundation for identifying candidates for curative surgical interventions, suggesting the
potential to refine patient selection. Future research should focus on multi-center validation and the integration of novel biomarkers to
further optimize these models for surgical decision-making and personalized treatment strategies.
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the asymptomatic early stages, often diagnosed at advanced

stages when treatment options are limited and prognosis is

Introduction poor. As a primary liver malignancy, HCC predominantly
develops in chronic liver disease and cirrhosis, with hepati-
tis B virus (HBV) and hepatitis C virus (HCV) infections
being the primary etiological factors. The epidemiology of
HCC exhibits significant geographical variation. In regions
like China, where HBV is endemic, the annual incidence
of HCC exceeds 25 cases per 100,000 people, accounting
- ) for over 50% of the global HCC burden [2,3]. In contrast,
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{ 90336996@qq.com). related liver disease, and metabolic disorders being the ma-
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jor risk factors [4,5].

Hepatocellular carcinoma (HCC) poses a significant global
health challenge due to its high incidence and mortality
rates. It ranks as the sixth most common cancer and the
third leading cause of cancer-related deaths in 2020 [1]. The
high mortality associated with HCC is largely attributed to
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The pathological progression of HCC is a multistep pro-
cess characterized by the malignant transformation of hep-
atocytes, driven by genetic alterations, chronic inflamma-
tion, and environmental factors [6]. Key contributors to
this process include chronic HBV and HCV infections, al-
cohol consumption, obesity, and aflatoxin exposure. How-
ever, the primary etiological factors vary significantly by
geographic region. For instance, HBV-related carcinogene-
sis, often exacerbated by aflatoxin exposure, is particularly
prevalent in China, while metabolic-associated fatty liver
disease (MAFLD) is emerging as a significant risk factor
in Western countries [6]. The global burden of HCC is ex-
pected to rise further due to the increasing prevalence of
obesity and diabetes, underscoring the urgent need for ef-
fective preventive and diagnostic strategies.

Traditional serum biomarkers, such as alpha-fetoprotein
(AFP), des-gamma-carboxyprothrombin (DCP), and the
lectin-bound fraction of AFP (AFP-L3), have been widely
employed for diagnosing and monitoring HCC. However,
their clinical efficacy has been questioned due to limited
sensitivity and specificity. For instance, AFP alone has
an approximate sensitivity of 60% for detecting early-stage
HCC, making it unreliable for early diagnosis [7,8]. Addi-
tionally, AFP’s diagnostic specificity is compromised since
its levels can be elevated in non-cancerous conditions such
as hepatitis, cirrhosis, and pregnancy [9]. Although DCP
and AFP-L3 offer slightly improved specificity, they re-
main insufficient as standalone biomarkers. A study in
Japan reported a sensitivity of 70% for DCP, which is still
suboptimal for early diagnosis [10]. Similarly, another
study found that AFP-L3 offers a sensitivity of 65% in dif-
ferentiating HCC from liver cirrhosis, indicating its limita-
tions for definitive diagnosis [11,12]. Given these obser-
vations, there is an urgent need for more comprehensive
approaches that integrate multiple biomarkers and patient-
specific factors to improve diagnostic accuracy across di-
verse patient populations.

To address limitations of traditional biomarkers, recent ad-
vancements have focused on multi-biomarker diagnostic
models that enhance diagnostic accuracy by integrating
serum biomarkers with clinical parameters through multi-
variate logistic regression. One of the most significant mod-
els is the GALAD model, which incorporates gender, age,
AFP, AFP-L3, and DCP and has proven to be a promis-
ing tool [11,13]. In a multi-center study, the GALAD
model demonstrated a substantial improvement in diag-
nosing early-stage HCC, achieving an area under the re-
ceiver operating characteristic curve (AUROC) of over 0.90
[6]. Building on this integrated approach, other models
have emerged to further improve the application of multi-
biomarker diagnostics. For example, the ASAP model,
which combines age, sex, AFP, and specific antibodies,
showed a sensitivity of 85% and specificity of 88% in a
Japanese cohort. Similarly, the GAAP model, which ex-
tends the GALAD framework by including Protein Induced

by Vitamin K Absence (PIVKA)-II, achieved an AUROC
of 0.88 for early-stage HCC detection in a multi-ethnic val-
idation study. The development of these models highlights
ongoing efforts to optimize diagnostic accuracy and under-
scores their significance as key benchmarks in our compar-
ative analysis.

Despite these innovations, multi-biomarker models en-
counter several challenges. A primary concern is the vari-
ability in their performance across diverse populations,
which limits their universal applicability. For instance,
while the GALAD model performed exceptionally well in
Western populations, its sensitivity was slightly lower in
Asian cohorts, likely due to differences in genetic and eti-
ological factors [7]. Additionally, the reliance on multi-
ple assays can increase costs, posing barriers to widespread
adoption, particularly in low-resource settings [8]. These
challenges highlight the critical need for additional vali-
dation and comparative analysis of existing models within
specific demographic groups.

Therefore, this study aims to comprehensively evalu-
ate and compare the diagnostic performance of several
novel multi-biomarker models, including TAGALAD and
GAP_TALAD, against the established GALAD model and
traditional individual markers (AFP, DCP, AFP-L3) within
our patient cohort. By identifying the most robust diag-
nostic framework, this study intends to enhance clinical
decision-making through more accurate and early detec-
tion of HCC, ultimately providing a stronger foundation for
stratifying high-risk patients and facilitating timely and po-
tentially curative interventions [14].

Materials and Methods
Study Subjects and Specimen Requirements

This retrospective study investigated diagnostic biomarkers
and methodologies for detecting liver cancer. Patient data
were collected from Ningbo No. 2 Hospital between Jan-
uary 2021 and December 2024. Study participants were re-
cruited following a predetermined inclusion-exclusion cri-
teria.

Inclusion criteria for patient selection were as follows: (1)
hospitalized patients who underwent simultaneous testing
for the three HCC biomarkers (AFP, AFP-L3, and DCP);
(2) age 18 years or older; (3) complete primary clinical in-
formation (including imaging examinations) in the Hospital
Information System (HIS) and primary laboratory test data
in the Laboratory Information System (LIS); (4) definitive
diagnosis based on established clinical criteria, including
imaging (magnetic resonance imaging/computed tomogra-
phy (MRI/CT)), serum AFP levels, and histopathological
confirmation where available for HCC patients; for con-
trols, confirmation of hepatitis or cirrhosis without evidence
of HCC via medical records; and (5) ethical approval from
the Institutional Review Board (IRB) Ningbo No. 2 Hos-
pital (No. PJ-NBEY-KY-2024-087-01) with a waiver of in-
formed consent for this retrospective analysis, as it involved
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de-identified data and posed minimal risk to participants.
Patients were excluded if they met the following criteria:
(1) patients tested for only one or two of the three HCC
biomarkers; (2) age under 18 years; (3) current warfarin
therapy; (4) HCC biomarker testing performed after tumor-
specific treatment in cancer patients; (5) unclear discharge
diagnosis; or (6) incomplete primary clinical information
(including imaging examinations) and laboratory test data,
or patients unable to cooperate.

To minimize potential variations due to circadian rhythms,
serum samples were collected from all participants between
7:00 AM and 9:00 AM after an overnight fast of at least 8
hours. Blood samples were processed within two hours of
collection, with serum separated by centrifugation at 2000
x g for 10 minutes at 4 °C. The serum samples were then
aliquoted and stored immediately at —80 °C until analysis to
prevent protein degradation. The patient selection process,
including screening, exclusions, and final cohort composi-
tion, is illustrated in Supplementary Fig. 1.

Diagnosis of Liver Cancer

Liver cancer was confirmed through imaging techniques
such as magnetic resonance imaging (MRI) and computed
tomography (CT) scans, alongside serum AFP level assess-
ments. Histopathological analysis was performed follow-
ing surgical resection or biopsy to confirm the diagnosis
when required. Advanced imaging approaches enabled pre-
cise localization and detailed characterization of liver tu-
mors.

Serum Biomarker Detection

Serum samples were collected from venous blood within 24
hours. Serum samples were either analyzed immediately, or
they were stored at —80 °C until use. The detection of key
biomarkers was conducted as follows:

DCP: Measured using a magnetic microparticle chemilu-
minescent immunoassay on the C3000 immunoassay ana-
lyzer (Beijing Hotgen Biotech Co., Ltd., Beijing, China).
AFP: Measured using a direct chemiluminescent double-
antibody sandwich method on the ADVIA Centaur XP
fully automated immunoassay analyzer (Siemens Healthi-
neers, Malvern, PA, USA). AFP-L3: Measured using an im-
munofluorescence reaction method on the n'TAS Wako 130
fully automated electrophoresis fluorescence immunoassay
analyzer (Fujifilm, Tokyo, Japan).

Application of Diagnostic Models

This study evaluated the diagnostic performance of sev-
eral previously established multi-biomarker models. These
models, including GALAD and its successors, are primarily
based on multivariable logistic regression formulas devel-
oped and published in prior research. We applied these pre-
defined formulas to our cohort data to generate diagnostic
scores and compare the models’ performance. The primary
models evaluated were:
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(1) GALAD: Integrates gender, age, AFP, AFP-L3, and
DCP.

(2) ASAP: Incorporates age, sex, AFP, and specific anti-
bodies to enhance diagnostic accuracy.

(3) GAAP: Extends the GALAD framework by including
PIVKA-IL

(4) TAGALAD: A refined model incorporating age, gen-
der, log (AFP), AFP-L3, log (DCP), log (Total Bilirubin
(TBIL)), and albumin (ALB).

(5) GAP_TALAD: A model incorporating age, gender,
platelet count (PLT), TBIL, ALB, AFP-L3, log (AFP), and
log (DCP).

Furthermore, other models, including C GALAD II,
GALAD C, and LAD, were also evaluated based on their
respective published formulas. This comparative analysis
aimed to identify the most robust model for HCC detection
within our study population.

Statistical Analysis

Statistical analysis was conducted using R software (ver-
sion 4.3.3; R Foundation for Statistical Computing, Vi-
enna, Austria). Missing data rates were analyzed, and the
five indicators with the highest missing rates were found
to be the large platelet ratio (62.45%), Cancer Antigen 125
(CA125, 44.58%), ferritin (42.57%), carbohydrate antigen
19-9 (CA19-9, 41.77%), and Carcinoembryonic Antigen
(CEA, 41.77%). Among these, the large platelet ratio, with
a missing rate exceeding 50%, was excluded from subse-
quent analyses. Missing data for the remaining variables
were imputed using the ‘mice’ package with the predic-
tive mean matching (PMM) method. To validate the im-
putation process, we compared the density plots of the
imputed variables before and after imputation. The plots
showed good consistency in data distribution, suggesting
that the imputation process did not introduce significant
bias (Supplementary Fig. 2).

The statistical analysis of variables was based on their
type and distribution. Continuous variables were eval-
uated for normality using the Shapiro-Wilk test. Nor-
mally distributed continuous variables were presented as
mean =+ standard deviation and compared using an inde-
pendent samples z-test. Non-normally distributed continu-
ous variables were presented as medians and interquartile
ranges (p25, p75) and analyzed using the Mann-Whitney U
test. Furthermore, categorical variables were expressed as
counts and percentages (n, %) and analyzed using the chi-
square (x?) test. Statistical significance was considered at
a p-value of less than 0.05.

Variables with significant p-values (<0.05) in univariate
analysis were evaluated for skewness. Those with absolute
skewness values greater than 2 underwent a logl0 trans-
formation to normalize their distributions. Following this
initial cohort characterization, the primary objective was
to evaluate and compare the performance of specific, pre-
defined diagnostic models previously established in the lit-
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erature (i.e., GALAD, ASAP, GAAP, and others), as well as
their recent extensions (TAGALAD, GAP_TALAD). Con-
sequently, the variables included in the subsequent diag-
nostic accuracy analyses were selected not through an ex-
ploratory analysis of all significant markers in Table 1, but
based on their inclusion in the formulas of these established
models. This approach ensures a direct and valid compari-
son with prior research.

To evaluate the diagnostic performance of biomarkers and
models, sensitivity, specificity, and the AUROC were cal-
culated. The optimal cut-off values for each model and
biomarker were determined using the Youden index, which
maximizes the sum of sensitivity and specificity. DeLong’s
test was used to compare AUROC values between models,
providing statistical validation of performance differences.
These methods ensured a rigorous and comprehensive as-
sessment of the diagnostic models’ accuracy.

Results

Baseline Data and Patient Characteristics

A total of 267 untreated HCC patients were included in the
disease group, while 231 patients with hepatitis and liver
cirrhosis formed the control group. These groups were used
to construct diagnostic models for HCC.

The baseline characteristics of the two groups are summa-
rized in Table 1. Patients in the disease group were sig-
nificantly older than those in the control group. The dis-
ease group also showed significantly higher levels of the
three liver cancer biomarkers (AFP-L3, DCP, and AFP).
Additionally, the prevalence of cirrhosis, hypertension,
and hepatitis virus infections, particularly chronic hepati-
tis B (CHB) was substantially higher in the disease group.
Furthermore, the disease group also showed significantly
higher smoking rates.

Hematological and biochemical indicators were substan-
tially increased in the disease group compared to the control
group. These included fibrinogen, PLT, white blood cell
(WBC) count, neutrophil percentage (NEU%), red blood
cell (RBC) count, hemoglobin (HGB), Apolipoprotein Al
(ApoAl), lipoprotein (a) (Lp (a)), Sialic Acid (SA), blood
urea nitrogen (BUN), glucose (GLU), total protein (TP),
ALB, and cholinesterase (CHE). These parameters reflect
the metabolic and inflammatory changes associated with
HCC.

Conversely, several indicators were significantly lower in
the disease group compared to the control group. These
included conditions such as alcoholic liver disease, drug-
induced liver disease, autoimmune liver disease, and
liver failure. Biochemical markers, such as TBIL, di-
rect bilirubin (DBIL), total bile acids (TBA), CA125, fer-
ritin, mean platelet volume (MPV), lymphocyte percentage
(LYM%), red cell distribution width (RDW), Apolipopro-
tein E (ApoE), angiotensin converting enzyme (ACE), and
phosphorus, were found to be reduced in the disease group.

Additionally, levels of CK-MB, a cardiac enzyme, were
also significantly lower in the disease group.

These differences in baseline characteristics between the
disease and control groups highlight the distinct metabolic,
inflammatory, and clinical profiles of patients with HCC,
suggesting that these parameters could potentially be incor-
porated into diagnostic models.

Diagnostic Accuracy of the Models (Comparison Between
the Models)

The skewness function was applied to variables with a uni-
variate analysis p-value < 0.05 to assess their distribu-
tion. Variables with an absolute skewness value greater
than 2 were considered severely skewed and underwent a
logl0 transformation. Moreover, all continuous variables
were standardized using the scale function to ensure uni-
formity in subsequent analyses. Based on the predefined
formulas for each model, the diagnostic performance of
AFP-L3, DCP, AFP, and various models (GALAD, ASAP,
GAAP, C_ GALAD II, GALAD C, GAP_TALAD, LAD,
C_GALAD, and TAGALAD) was evaluated using receiver
operating characteristic (ROC) curve analysis.

The findings of the ROC curve analysis are presented in
Fig. 1 and Table 2. Among the single biomarkers, AFP-
L3, DCP, and AFP showed relatively low diagnostic ac-
curacy, with area under the curve (AUC) values of 0.662
(95% CI: 0.616-0.708), 0.787 (95% CI: 0.746—0.827), and
0.654 (95% CI: 0.606—0.701), respectively. These results
highlight the limited sensitivity and specificity of individ-
ual biomarkers in diagnosing HCC.

In contrast, multi-biomarker models demonstrated signifi-
cantly improved diagnostic performance. The TAGALAD
model achieved the highest AUC of 0.880 (95% CI: 0.851—
0.909), followed closely by the GAP_TALAD model,
which yielded an AUC of 0.874 (95% CI: 0.843-0.905).
Both models outperformed other diagnostic systems, in-
cluding the GALAD model (AUC =0.779, 95% CI: 0.739—
0.819), which has been widely validated in previous studies.
Other models, such as ASAP (AUC =0.813), GAAP (AUC
= 0.807), and GALAD C (AUC = 0.831), also showed
better diagnostic performance than individual biomarkers,
though they did not reach the accuracy levels observed with
TAGALAD and GAP_TALAD.

The sensitivity and specificity of TAGALAD and
GAP _TALAD were substantially higher than those of
other models. TAGALAD achieved a sensitivity of 0.760
(95% CI: 0.663-0.813) and a specificity of 0.861 (95% CI:
0.758-0.909), while GAP_TALAD yielded a sensitivity
of 0.820 (95% CI: 0.738-0.865) and a specificity of 0.823
(95% CI: 0.658-0.874). These findings suggest that
TAGALAD and GAP TALAD offer the most reliable
diagnostic performance for distinguishing HCC from
non-HCC conditions. Conversely, the GALAD model,
while outperforming individual biomarkers, demonstrated
moderate sensitivity (0.667) and specificity (0.805),
suggesting room for improvement.
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Table 1. Comparison of baseline indicators between the disease group and the control group.

Characteristic

Control group (hepatitis and liver cirrhosis, n =231)  Disease group (HCC,n=267) p-value
Gender 0.468
Male 52 (22.511) 53 (19.850)
Female 179 (77.489) 214 (80.150)
Age, years, mean (SD) 56.143 (12.367) 61.577 (10.969) <0.001
AFP-L3(%) 1.100 (0.500, 8.300) 7.500 (0.500, 32.100) <0.001
DCP (mAU/mL) 19.000 (14.720, 32.715) 156.000 (27.000, 3243.000) <0.001
AFP (ng/mL) 6.000 (2.300, 39.450) 30.400 (4.050, 303.700) <0.001
Comorbidity
Liver cirrhosis 162 (70.130) 212 (79.401) 0.017
Fatty liver 21(9.091) 13 (4.869) 0.062
Alcoholic liver disease 37 (16.017) 19 (7.116) 0.002
Drug-induced liver disease 8 (3.463) 1(0.375) 0.014
Autoimmune liver disease 17 (7.359) 5(1.873) 0.003
Hypertension 45 (19.481) 91 (34.082) <0.001
Type 2 diabetes 41 (17.749) 46 (17.228) 0.879
Hepatic encephalopathy 35 (15.152) 41 (15.356) 0.950
Esophageal and gastric varices 40 (17.316) 42 (15.730) 0.634
Hepatic failure 35(15.152) 10 (3.745) <0.001
Hepatorenal syndrome 6 (2.597) 3(1.124) 0.469
Chronic hepatitis B 143 (61.905) 219 (82.022) <0.001
Smoke 51(22.078) 89 (33.333) 0.005
Alcohol 52 (22.511) 76 (28.464) 0.129
BMI (kg/m?) 23.430 (21.000, 25.745) 23.000 (20.940, 24.910) 0.196
Family history of liver cancer 13 (5.628) 15 (5.618) 0.996
DD (ng/mL) 200.000 (137.000, 652.000) 186.000 (137.000, 523.000) 0.382
PT (s) 13.200 (11.750, 15.100) 12.300 (11.400, 13.450) <0.001
INR 1.160 (1.040, 1.335) 1.070 (1.010, 1.180) <0.001
FIB (g/L) 2.520 (1.950, 3.250) 3.140 (2.520, 3.900) <0.001
TT (s) 24.300 (19.450, 26.850) 22.400 (20.300, 25.050) 0.010
APTT (s) 33.300 (30.050, 37.100) 31.700 (29.100, 34.400) <0.001
CA125 (U/mL) 16.000 (7.600, 154.600) 12.300 (6.850, 29.800) 0.003
CA19-9 (U/mL) 19.030 (9.590, 30.040) 15.850 (8.450, 26.290) 0.053
CEA (ng/mL) 1.890 (1.120, 2.800) 2.000 (1.165,2.920) 0.588
FER (ng/mL) 323.400 (96.400, 645.850) 195.700 (95.500, 364.100) 0.001
PLT (10°/L) 106.000 (67.000, 165.000) 132.000 (91.000, 179.500) <0.001
MPV (fL) 10.100 (9.100, 10.900) 9.800 (8.900, 10.750) 0.047
PCT (%) 0.100 (0.065, 0.160) 0.130 (0.090, 0.180) <0.001
PDW (fL) 16.500 (15.700, 17.150) 16.500 (15.800, 17.000) 0.462
WBC (10°/L) 4.500 (3.300, 5.600) 5.100 (3.700, 6.300) 0.001
NEU% 61.006 £ 12.695 63.901 £+ 11.732 0.008
LYM% 27.100 + 11.052 25.001 £ 10.049 0.027
MONO% 9.000 (6.850, 11.150) 7.900 (6.400, 9.750) 0.004
EOS% 1.700 (1.000, 3.000) 1.500 (0.750, 2.800) 0.092
BASO% 0.400 (0.300, 0.600) 0.400 (0.300, 0.600) 0.557
RBC (10'2/L) 3.930 (3.500, 4.480) 4.270 (3.700, 4.675) 0.002
HGB (g/L) 126.000 (109.500, 140.000) 132.000 (117.000, 145.000) 0.002
MCV (fL) 95.100 (90.250, 99.950) 94.100 (90.350, 97.850) 0.259
RDW (fL) 14.700 (13.700, 16.350) 13.600 (13.100, 14.700) <0.001
TC (mmol/L) 3.820 (3.165, 4.670) 4.030 (3.405, 4.715) 0.077
TG (mmol/L) 1.040 (0.760, 1.605) 0.980 (0.730, 1.310) 0.124
HDL (mmol/L) 1.090 (0.845, 1.370) 1.130 (0.945, 1.380) 0.112
LDL-C (mmol/L) 2.090 (1.680, 2.755) 2.340 (1.835, 2.850) 0.054
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Table 1. Continued.

Characteristic Control group (hepatitis and liver cirrhosis, n =231)  Disease group (HCC, n=267) p-value
ApoAl (g/L) 1.110 (0.830, 1.320) 1.160 (0.960, 1.330) 0.046
ApoB (g/L) 0.690 (0.560, 0.930) 0.730 (0.590, 0.875) 0.469
ApoE (mg/dL) 5.900 (4.900, 7.150) 5.400 (4.500, 6.350) 0.002
Lp (a) (mg/L) 36.200 (15.400, 81.450) 52.000 (25.450, 106.000) <0.001
SA (mg/dL) 49.200 (42.750, 57.550) 54.900 (47.450, 63.300) <0.001
hs-CRP (mg/L) 2.500 (1.070, 7.870) 2.720 (0.915, 14.630) 0.530
BUN (mmol/L) 4.770 (3.675, 5.755) 5.150 (4.035, 6.425) 0.003
UA (umol/L) 320.200 (250.800, 391.650) 320.200 (260.700, 372.700) 0.924
Cr (pmol/L) 64.500 (56.150, 71.800) 66.000 (56.400, 78.200) 0.104
ACE (U/L) 128.000 (80.500, 178.000) 99.000 (72.000, 148.500) <0.001
GLU (mmol/L) 5.110 (4.320, 6.860) 5.640 (4.865, 6.860) <0.001
K (mmol/L) 3.820 (3.535, 4.105) 3.870 (3.600, 4.115) 0.153
Na* (mmol/L) 139.000 (137.350, 141.350) 139.900 (137.750, 141.700) 0.099
CI” (mmol/L) 105.200 (102.700, 107.450) 105.300 (102.800, 107.400) 0.824
CO2CP (mmol/L) 24.075 + 2.626 24.097 £ 2.727 0.927
P (mmol/L) 1.100 (0.980, 1.215) 1.040 (0.920, 1.140) <0.001
TBIL (pmol/L) 22.000 (13.000, 42.250) 15.300 (10.150, 22.500) <0.001
DBIL (pumol/L) 10.200 (4.900, 26.450) 6.100 (3.800, 10.800) <0.001
TP (g/L) 65.800 (59.700, 71.200) 69.300 (64.850, 73.350) <0.001
ALB (g/L) 34.300 (30.200, 39.250) 38.900 (33.600, 42.450) <0.001
AST (U/L) 47.000 (32.500, 96.500) 43.000 (31.000, 77.000) 0.086
ALT (U/L) 34.000 (21.000, 85.500) 31.000 (21.000, 50.000) 0.077
ALP (U/L) 118.000 (95.000, 156.500) 116.000 (88.500, 171.500) 0.899
GGT (U/L) 70.000 (33.500, 160.000) 65.000 (34.000, 159.500) 0.990
LDH (U/L) 209.000 (175.000, 271.000) 217.000 (184.000, 270.500) 0.193
CHE (U/L) 4140.000 (3102.000, 6010.000) 5396.000 (3681.500, 6949.000) <0.001
ADA (U/L) 15.700 (11.450, 20.100) 14.400 (10.800, 19.100) 0.053
CK (U/L) 91.000 (69.000, 128.000) 98.000 (73.000, 133.000) 0.228
CK-MB (U/L) 20.000 (13.000, 34.000) 17.000 (12.000, 28.000) 0.021
AFU (U/L) 28.700 (21.750, 38.550) 27.600 (21.550, 35.500) 0.442
TBA (umol/L) 28.600 (10.900, 99.550) 13.500 (6.000, 36.450) <0.001

Note: Data are presented as mean &+ SD or median (p25, p75). Abbreviations: HCC, hepatocellular carcinoma; AFP-L3,
lectin-bound fraction of AFP; DCP, des-gamma-carboxyprothrombin; AFP, alpha-fetoprotein; BMI, body mass index; DD, D-
dimer; PT, Prothrombin Time; INR, International Normalized Ratio; FIB, Fibrinogen; TT, Thrombin Time; APTT, Activated
Partial Thromboplastin Time; CA125, Cancer Antigen 125; CA19-9, Cancer Antigen 19-9; CEA, Carcinoembryonic Antigen;
FER, Ferritin; PLT, platelet count; MPV, mean platelet volume; PCT, Plateletcrit; PDW, Platelet Distribution Width; WBC,
white blood cell; NEU%, neutrophil percentage; LYM%, lymphocyte percentage; MONO%, Monocyte Percentage; EOS%,
Eosinophil Percentage; BASO%, Basophil Percentage; RBC, red blood cell; HGB, hemoglobin; MCV, Mean Corpuscular
Volume; RDW, red cell distribution width; TC, Total Cholesterol; TG, Triglycerides; HDL, High-Density Lipoprotein; LDL-
C, Low-Density Lipoprotein Cholesterol; ApoA1, Apolipoprotein Al; ApoB, Apolipoprotein B; ApoE, Apolipoprotein E; Lp
(a), lipoprotein (a); SA, Sialic Acid; hs-CRP, High-Sensitivity C-Reactive Protein; BUN, blood urea nitrogen; UA, Uric Acid;
Cr, Creatinine; ACE, angiotensin converting enzyme; GLU, glucose; K, Potassium; Na*, Sodium; Cl-, Chloride; CO-CP,
Carbon Dioxide Combining Power; P, Phosphorus; TBIL, Total Bilirubin; DBIL, direct bilirubin; TP, total protein; ALB,
albumin; AST, Aspartate Aminotransferase; ALT, Alanine Aminotransferase; ALP, Alkaline Phosphatase; GGT, Gamma-
Glutamyl Transferase; LDH, Lactate Dehydrogenase; CHE, cholinesterase; ADA, Adenosine Deaminase; CK, Creatine
Kinase; CK-MB, Creatine Kinase-MB; AFU, Alpha-L-Fucosidase; TBA, total bile acids.

Overall, the results underscore the diagnostic superiority
of TAGALAD and GAP_TALAD, particularly in terms of
AUC values, sensitivity, and specificity. These findings
suggest that incorporating additional parameters and ad-
vanced computational approaches into these models pro-
vides significant advantages over traditional diagnostic ap-

proaches. A detailed comparison of these models is shown
in Fig. 1 and Table 2.

Sensitivity Analysis of the Models

To assess the robustness of our primary findings, a series of
sensitivity analyses was conducted across several key clin-
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Fig. 1. Receiver operating characteristic (ROC) curves of the models and other individual indicators.
Table 2. ROC curve analysis of the models and other individual indicators.
Model AUC (95% CI) Sensitivity (95% CI)  Specificity (95% CI)  Cut-off
AFP-L3 0.662 (0.616-0.708)  0.337 (0.248-0.393)  0.944 (0.866-0.978)  20.850
DCP 0.787 (0.746-0.827)  0.640 (0.551-0.697)  0.844 (0.727-0.905)  48.350
AFP 0.654 (0.606-0.701)  0.584 (0.491-0.659)  0.658 (0.558-0.732) 13.850
GALAD 0.779 (0.739-0.819)  0.667 (0.566-0.723)  0.805 (0.654-0.861) 2.615
ASAP 0.813 (0.776-0.851)  0.644 (0.551-0.708)  0.853 (0.749-0.905) 1.059
GAAP 0.807 (0.770-0.845)  0.652 (0.569-0.712)  0.835 (0.736-0.900) 7.825
C_GALAD II  0.769 (0.728-0.810)  0.547 (0.457-0.610)  0.883 (0.788-0.931) 1.952
GALAD_C 0.831(0.795-0.867)  0.663 (0.532-0.723)  0.883 (0.797-0.922) 0.552
GAP_TALAD  0.874 (0.843-0.905)  0.820 (0.738-0.865)  0.823 (0.658-0.874) 0.773
LAD 0.801 (0.762-0.839)  0.667 (0.588-0.719)  0.835 (0.714-0.896) 0.491
C_GALAD 0.813 (0.776-0.850)  0.659 (0.577-0.723)  0.861 (0.775-0.918) 2318
TAGALAD 0.880 (0.851-0.909)  0.760 (0.663-0.813)  0.861 (0.758-0.909) 0.525

Note: Cut-off values were determined using the Youden index. AUC, area under the curve.

ical and demographic subgroups: (1) patients with patho-
logically confirmed HCC, (2) patients with clinically diag-
nosed HCC, (3) patients with early-stage HCC (TNM I+1I),
(4) patients with complete data and no imputation, and (5)
patients with HBV-related disease.

For the analyses of pathologically confirmed, clinically di-
agnosed, and early-stage HCC, each subgroup was com-
pared with the entire control group (n = 231). The spe-
cific control groups for the complete-data and HBV-related
analyses are outlined in their respective sections below.
In all analyses, the TAGALAD and GAP_TALAD models
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consistently outperformed the other models and individual
biomarkers in diagnostic accuracy. The detailed ROC anal-
ysis results for each of these subgroups are presented in Ta-
bles 3,4,5,6,7 and Figs. 2,3,4,5,6, respectively.

ROC Curve Analysis of 89 Pathologically Confirmed
HCC Patients

The sensitivity analysis was conducted on 89 pathologically
confirmed HCC patients. The ROC curve analysis is pre-
sented in Fig. 2 and Table 3. Both the TAGALAD and
GAP_TALAD models showed excellent diagnostic perfor-



1.00

0.75

0.50

sensitivity

0.25

0.00

0.00

0.25

Dafeng Mao, et al.

0.50
1 - specificity

0.75

=== C_GALAD_II
= GAAP

== GALAD
GALAD_C
GAP_TALAD
LAD
TAGALAD
AFP

AFP isoform
=== DCP

1.00

Fig. 2. ROC curves of the models and other individual indicators (subgroups diagnosed through pathological methods).
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Fig. 3. ROC curves of the models and other individual indicators (clinically diagnosed subgroup).
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Fig. 4. ROC curves of the models and other individual indicators (early HCC subgroup).
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Fig. 5. ROC curves of the models and other individual indicators (no missing data subgroups).
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Fig. 6. ROC curves of the multi-biomarker diagnostic models and other individual indicators (chronic hepatitis B (CHB)-related

HCC subgroup).

Table 3. ROC curve analysis results of the models and other individual indicators (subgroups diagnosed through pathological

methods).
Model AUC (95% CI) Sensitivity (95% CI)  Specificity (95% CI)  Cut-off
AFP-L3 0.599 (0.528-0.670)  0.292 (0.180-0.382)  0.957 (0.736-0.991)  23.250
DCP 0.741 (0.677-0.805)  0.663 (0.506-0.753)  0.736 (0.602-0.805)  30.500
AFP 0.595 (0.523-0.667)  0.551 (0.393-0.652)  0.662 (0.446-0.749)  14.700
GALAD 0.744 (0.684-0.803)  0.596 (0.427-0.685)  0.805 (0.602—0.874) 2.616
ASAP 0.786 (0.731-0.840)  0.809 (0.697-0.899)  0.636 (0.463-0.732)  —0.056
GAAP 0.777 (0.721-0.834)  0.663 (0.517-0.764)  0.775 (0.619-0.853) 6.901
C GALAD II  0.704 (0.640-0.768)  0.708 (0.573-0.798)  0.610 (0.415-0.701) 0.006
GALAD C 0.801 (0.748-0.855)  0.854 (0.742-0.921)  0.615 (0.394-0.714) 0.349
GAP_TALAD  0.894 (0.858-0.931)  0.854 (0.708-0.921)  0.823 (0.628-0.879) 0.773
LAD 0.755 (0.693-0.816)  0.584 (0.449-0.674)  0.835 (0.649-0.931) 0.491
C _GALAD 0.780 (0.724-0.837)  0.652 (0.517-0.753)  0.779 (0.593-0.879) 1.678
TAGALAD 0.897 (0.861-0.933)  0.921 (0.764-0.966)  0.740 (0.558-0.792) 0.397

Note: Cut-off values were determined using the Youden index.

mance and demonstrated the highest discriminative power
among all models and individual biomarkers. Specifically,
the ROC-AUC values for TAGALAD and GAP_TALAD
were 0.897 (95% CI: 0.861-0.933) and 0.894 (95% CI:
0.858-0.931), respectively. These values were signifi-
cantly higher than those of the GALAD model (AUC =
0.744, 95% CI: 0.684-0.803) and individual biomarkers,
including AFP-L3 (AUC = 0.599, 95% CI: 0.528-0.670),
DCP (AUC=0.741, 95% CI: 0.677-0.805), and AFP (AUC
=0.595, 95% CI: 0.523-0.667).

The superior diagnostic accuracy of TAGALAD and
GAP_TALAD in this subgroup highlights their robustness
and reliability in distinguishing HCC cases, even within a
cohort of patients definitively diagnosed through pathologi-
cal methods. This finding underscores the potential of these
models as valuable tools in clinical settings where precise
diagnostic approaches are crucial.
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Table 4. ROC curve analysis results of the models and other individual indicators (clinically diagnosed subgroup).
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Model AUC (95% CI) Sensitivity (95% CI)  Specificity (95% CI)  Cut-off
AFP-L3 0.693 (0.642-0.744)  0.455 (0.360-0.537)  0.866 (0.740-0.926)  11.950
DCP 0.809 (0.764-0.855)  0.713 (0.612-0.770)  0.844 (0.680-0.905)  48.350
AFP 0.683 (0.631-0.735)  0.534 (0.410-0.624)  0.732 (0.628-0.797)  29.900
GALAD 0.797 (0.751-0.842)  0.685 (0.584-0.758)  0.827 (0.675-0.892)  2.917
ASAP 0.827 (0.785-0.870)  0.629 (0.522-0.697)  0.918 (0.827-0.965)  1.882
GAAP 0.822 (0.780-0.865)  0.652 (0.562-0.730)  0.892 (0.758-0.948)  9.167
C_GALAD II  0.802(0.756-0.847)  0.635(0.534-0.708)  0.879 (0.775-0.931)  1.880
GALAD C 0.845 (0.804-0.887)  0.719 (0.596-0.787)  0.879 (0.788-0.922)  0.541
GAP_TALAD  0.864 (0.826-0.902)  0.758 (0.663-0.826)  0.879 (0.766-0.926)  1.363
LAD 0.824 (0.780-0.867)  0.702 (0.612-0.759)  0.848 (0.740-0.918)  0.507
C_GALAD 0.829 (0.787-0.872)  0.685 (0.562-0.753)  0.892 (0.797-0.935)  2.896
TAGALAD 0.872 (0.837-0.907)  0.758 (0.668-0.815)  0.861 (0.736-0.922)  0.525

Note: Cut-off values were determined using the Youden index.

Table 5. ROC curve analysis results of the models and other individual indicators (early liver cancer subgroup).

Model AUC (95% CI) Sensitivity (95% CI)  Specificity (95% CI)  Cut-off
AFP-L3 0.597 (0.540-0.655)  0.221 (0.124-0.290)  0.957 (0.857-0.987)  23.250
DCP 0.728 (0.672-0.784)  0.559 (0.448-0.634)  0.844 (0.721-0.909)  48.350
AFP 0.606 (0.547-0.666)  0.545 (0.407-0.641)  0.658 (0.532-0.732)  13.850
GALAD 0.741 (0.689-0.794)  0.607 (0.476-0.683)  0.801 (0.641-0.861) 2.520
ASAP 0.777 (0.728-0.827)  0.614 (0.476-0.683)  0.840 (0.688-0.892) 0.935
GAAP 0.770 (0.719-0.820)  0.593 (0.483-0.683)  0.835 (0.727-0.901) 7.835
C_GALAD IT  0.737 (0.684-0.790)  0.683 (0.565-0.759)  0.697 (0.571-0.775)  0.515
GALAD C 0.793 (0.745-0.842)  0.793 (0.676-0.855)  0.701 (0.498-0.771) 0.390
GAP_TALAD  0.867 (0.829-0.905)  0.807 (0.683-0.862)  0.823 (0.662-0.874) 0.773
LAD 0.737 (0.682-0.791)  0.572 (0.469-0.655)  0.835 (0.710-0.909) 0.492
C_GALAD 0.763 (0.712-0.814)  0.641 (0.538-0.717)  0.801 (0.589-0.879) 1.816
TAGALAD 0.860 (0.822-0.898)  0.834 (0.710-0.890)  0.740 (0.584-0.801) 0.398

Note: Cut-off values were determined using the Youden index.

Table 6. Analysis results of ROC curves of the models and other individual indicators (no missing data subgroups).

Model AUC (95% CI) Sensitivity (95% CI)  Specificity (95% CI)  Cut-off
AFP-L3 0.659 (0.596-0.723)  0.355(0.211-0.428)  0.936 (0.798-0.979)  21.900
DCP 0.798 (0.745-0.852)  0.645 (0.536-0.717)  0.872 (0.702-0.957)  49.000
AFP 0.612 (0.542-0.682)  0.572 (0.404-0.663)  0.660 (0.489-0.755) 11.950
GALAD 0.756 (0.697-0.816)  0.645 (0.494-0.723)  0.798 (0.617-0.883) 2.722
ASAP 0.813 (0.761-0.864)  0.663 (0.536-0.741)  0.840 (0.670-0.915) 1.056
GAAP 0.807 (0.755-0.859)  0.735 (0.602—0.801)  0.766 (0.595-0.851) 6.725
C _GALAD II  0.751(0.692-0.810)  0.566 (0.386-0.639)  0.862 (0.681-0.915) 1.853
GALAD C 0.831 (0.782-0.880)  0.620 (0.470-0.699)  0.926 (0.787-0.979) 0.714
GAP_TALAD  0.880(0.838-0.922)  0.855(0.735-0.904)  0.798 (0.532-0.883) 0.771
LAD 0.814 (0.763-0.865)  0.590 (0.422-0.669)  0.936 (0.819-0.979) 0.742
C _GALAD 0.812 (0.760-0.863)  0.699 (0.548-0.777)  0.840 (0.691-0.915) 2.167
TAGALAD 0.888 (0.849-0.928)  0.741 (0.614-0.825)  0.904 (0.787-0.968) 0.674

Note: Cut-off values were determined using the Youden index.

ROC Curve Analysis of 178 Clinically Diagnosed HCC
Patients

A ROC curve analysis was conducted on 178 clinically
diagnosed HCC patients to evaluate the diagnostic per-
formance of various models and individual biomarkers.
The results, shown in Fig. 3 and Table 4, demonstrated
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that the TAGALAD and GAP_TALAD models showed su-
perior diagnostic accuracy in this subgroup. The ROC-
AUC values for TAGALAD and GAP_TALAD were 0.872
and 0.864, respectively, significantly outperforming the
GALAD model and individual biomarkers, including AFP-
L3, DCP, and AFP.



Table 7. ROC curve analysis results of the models and other individual indicators (CHB liver cancer subgroup).
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Model AUC (95% CI) Sensitivity (95% CI)  Specificity (95% CI)  Cut-off
AFP-L3 0.614 (0.558-0.670)  0.342 (0.242-0.406)  0.916 (0.797-0.965)  20.850
DCP 0.799 (0.754-0.845)  0.603 (0.447-0.667)  0.923 (0.797-0.965)  62.000
AFP 0.598 (0.539-0.657)  0.342 (0.237-0.425)  0.818 (0.706-0.888)  159.150
GALAD 0.731(0.679-0.782)  0.616 (0.511-0.694)  0.762 (0.580-0.839)  2.917
ASAP 0.800 (0.755-0.844)  0.630 (0.521-0.703)  0.839 (0.720-0.909)  0.912
GAAP 0.789 (0.744-0.835)  0.630 (0.530-0.694)  0.825 (0.692-0.895)  7.825
C_GALAD II  0.752 (0.702-0.801)  0.543 (0.402-0.612)  0.874 (0.741-0.923) 1911
GALAD _C 0.831(0.789-0.874)  0.758 (0.644-0.831)  0.825 (0.727-0.888)  0.428
GAP_TALAD  0.857 (0.818-0.896)  0.785 (0.662-0.845)  0.818 (0.685-0.881)  0.904
LAD 0.789 (0.743-0.835)  0.639 (0.534-0.717)  0.853 (0.734-0.916)  0.501
C_GALAD 0.791 (0.745-0.836)  0.598 (0.447-0.671)  0.888 (0.783-0.937)  3.016
TAGALAD 0.874(0.838-0.910)  0.753 (0.644-0.817)  0.853 (0.741-0.909)  0.517

Note: Cut-off values were determined using the Youden index.

These findings further emphasize the robustness of
TAGALAD and GAP_TALAD in clinical settings, where
accurate diagnosis is critical. The superior performance of
these models, compared to GALAD and single biomark-
ers, underscores their enhanced capability to integrate mul-
tiple factors, providing a more comprehensive assessment
for distinguishing HCC from non-HCC conditions. This
suggests that TAGALAD and GAP_TALAD offer substan-
tial clinical utility in improving diagnostic precision in real-
world scenarios involving clinically diagnosed HCC pa-
tients.

ROC Curve Analysis of 145 Early-Stage HCC (TNM
Stage I+II) Patients

A ROC curve analysis was performed on 145 early-stage
HCC patients (TNM stages I and II) to assess the diagnostic
accuracy of various models and individual biomarkers. The
results, presented in Fig. 4 and Table 5, demonstrated that
both TAGALAD and GAP_TALAD models showed excel-
lent diagnostic performance in this subgroup. The ROC-
AUC values for TAGALAD and GAP_TALAD were 0.860
(95% CI: 0.822-0.898) and 0.867 (95% CI: 0.829-0.905),
respectively, significantly higher than those of the GALAD
model (AUC = 0.741, 95% CI: 0.689-0.794) and individ-
ual biomarkers, including AFP-L3 (AUC = 0.597, 95% CI:
0.540-0.655), DCP (AUC = 0.728, 95% CI: 0.672—0.784),
and AFP (AUC = 0.606, 95% CI: 0.547-0.666).

The superior AUC values of TAGALAD and GAP_ TALAD
highlight their capability to accurately identify early-stage
HCC patients, where prompt diagnosis is critical for ef-
fective intervention and improved prognoses. In addition
to their strong diagnostic accuracy, the calibration anal-
ysis revealed that TAGALAD demonstrated optimal cal-
ibration performance, with a Brier score of 0.066 and a
Hosmer-Lemeshow p-value of 0.532, indicating excellent
agreement between predicted and observed probabilities.
GAP_TALAD also showed robust calibration, with a Brier
score of 0.070 and a Hosmer-Lemeshow p-value of 0.390,
though slightly less accurate in extreme risk ranges.

In contrast, the GALAD model and individual biomarkers
exhibited inferior diagnostic and calibration performance,
with higher prediction errors and poorer calibration metrics.
These findings underscore the clinical utility of TAGALAD
and GAP_TALAD in detecting early-stage HCC, providing
reliable and accurate predictions that can guide early diag-
nosis and management decisions.

ROC Curve Analysis of 167 HCC Patients With Complete
Data and 95 Hepatitis + Cirrhosis Patients With Complete
Data

A ROC curve analysis was conducted on 167 HCC patients
and 95 control patients (with hepatitis + liver cirrhosis), all
with complete data, to evaluate the diagnostic performance
of various models and individual biomarkers. The results,
shown in Fig. 5 and Table 6, revealed that TAGALAD and
GAP_TALAD achieved the highest diagnostic accuracy
among all models and biomarkers. Specifically, the ROC-
AUC values for TAGALAD and GAP_TALAD were 0.888
and 0.880, respectively, significantly higher than those of
the GALAD model and individual biomarkers, including
AFP-L3, DCP, and AFP.

The exceptional diagnostic performance of TAGALAD and
GAP_TALAD in this subgroup underscores their robust-
ness and reliability, even in the absence of missing data.
These models use a comprehensive array of clinical and
biochemical parameters, achieving superior accuracy com-
pared to GALAD, which demonstrated lower AUC values
and suboptimal calibration performance. Similarly, indi-
vidual biomarkers such as AFP-L3, DCP, and AFP demon-
strated limited diagnostic utility, further emphasizing the
advantages of multi-biomarker models like TAGALAD and
GAP_TALAD.

These findings highlight the superior diagnostic capabilities
of TAGALAD and GAP_TALAD when complete datasets
are available. Their ability to consistently outperform tra-
ditional models and individual biomarkers reinforces their
potential as reliable tools for accurately diagnosing HCC in
diverse clinical settings.
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ROC Curve Analysis of 219 HBV-Related HCC Patients
and 143 HBV-Related Hepatitis + Cirrhosis Patients

A ROC curve analysis was performed on 219 HBV-related
HCC patients and 143 HBV-related control patients (hepati-
tis + liver cirrhosis) to evaluate the diagnostic performance
of various models and individual biomarkers. As shown in
Fig. 6 and Table 7, the analysis revealed that TAGALAD
and GAP_TALAD demonstrated the highest diagnostic
accuracy among all models and individual biomarkers.
Specifically, the ROC-AUC values for TAGALAD and
GAP_TALAD were 0.874 and 0.857, respectively, both
significantly outperforming the GALAD model and single
biomarkers (AFP-L3, DCP, AFP).

TAGALAD achieved an excellent AUC of 0.874, with
a sensitivity of 0.753 and a specificity of 0.853, high-
lighting its robust diagnostic performance in this HBV-
related subgroup. GAP_TALAD followed closely with an
AUC of 0.857, a sensitivity of 0.785, and a specificity
of 0.818, further confirming its reliability for diagnosing
HBV-related HCC. These results underscore the superior
capability of TAGALAD and GAP_TALAD to integrate
multiple biomarkers and clinical parameters, providing a
more comprehensive assessment compared to traditional
models.

In contrast, the GALAD model, while outperforming in-
dividual biomarkers, showed a lower AUC of 0.731, with
moderate sensitivity (0.616) and specificity (0.762). Sin-
gle biomarkers, including AFP-L3, DCP, and AFP, showed
the weakest diagnostic performance, with AUC values of
0.614, 0.799, and 0.598, respectively. AFP and AFP-L3
were particularly limited by their low sensitivity, reducing
their reliability in distinguishing HBV-related HCC from
non-HCC conditions.

These findings highlight the diagnostic superiority of
TAGALAD and GAP TALAD in HBV-related HCC,
where early and accurate diagnosis is critical. The inte-
gration of novel variables and advanced modeling in these
frameworks significantly enhances their clinical utility, dis-
tinguishing them from GALAD model and traditional sin-
gle biomarkers.

Discussion

Early diagnosis of HCC is critical for improving survival
rates, as most patients are diagnosed at advanced stages
when curative treatment options are limited. The current di-
agnostic approach relies on serum biomarkers such as AFP,
DCP, and AFP-L3, along with imaging methods, including
ultrasound, CT, and MRI. However, these methods have
limitations in sensitivity and specificity, particularly in de-
tecting early-stage HCC or differentiating it from benign
liver conditions like hepatitis and cirrhosis [15]. These lim-
itations are evident in our sensitivity analyses, where the
diagnostic performance of a single marker like AFP-L3—
including its optimal cut-off, sensitivity, and specificity—
varied substantially across different patient subgroups (e.g.,
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early-stage vs. clinically diagnosed HCC), as shown in Ta-
bles 2,3,4,5. Such variation is a well-known consequence
of spectrum bias in diagnostic research, reflecting that the
efficacy of a test is intrinsically linked to the case-mix and
clinical characteristics of the study population. To over-
come these challenges, multi-biomarker models such as
TAGALAD and GAP_TALAD have emerged as promis-
ing tools for early and accurate HCC diagnosis, leveraging
advanced statistical modeling to integrate clinical and bio-
chemical parameters [16,17].

It is essential to clarify the framework of ‘impact’ as pre-
sented in this study. Our investigation focuses on the prin-
ciple that accurate, early diagnosis is a crucial prerequisite
and key determinant for surgical candidacy in HCC man-
agement. The term ‘impact on surgical decision-making’,
thus, refers to the foundational effect of improving the diag-
nostic accuracy at this critical juncture. By demonstrating
that advanced models like TAGALAD and GAP_TALAD
can more reliably identify patients with early-stage disease,
our research addresses the most significant bottleneck that
currently limits the number of patients eligible for curative
interventions. While this study does not measure down-
stream metrics like resection rates or survival—areas that
remain crucial for future longitudinal research—improving
this initial, rate-limiting diagnostic step constitutes a funda-
mental and direct impact on the entire surgical management
process.

The superior performance of TAGALAD and
GAP_TALAD likely arises from their advanced integration
of multiple variables, offering a more comprehensive
view of the host-tumor interaction. While the GALAD
model serves as a foundational strategy, it is limited to
tumor-derived glycoproteins (AFP, AFP-L3, DCP), which
may not fully capture the biological complexity of the
disease [18]. In contrast, TAGALAD incorporates albumin
and bilirubin, which are not tumor-derived but indicate
the liver’s deteriorating synthetic and excretory functions
under tumor-induced stress. This inclusion provides an
indirect measure of the tumor’s systemic metabolic effect,
a critical aspect of its pathophysiology [19].

A high neutrophil-to-lymphocyte ratio (NLR) reflects a
state of increased systemic inflammation and suppressed
anti-tumor immunity, with its prognostic value as a key
factor in the progression of HBV-related HCC now well-
established [20]. This mechanistic distinction—from rely-
ing purely on tumor-derived markers to incorporating the
host’s systemic response—Ilikely accounts for the enhanced
robustness of these models. This added complexity has sig-
nificant clinical potential, as such models could be critical
in refining current surveillance guidelines for high-risk pop-
ulations [21]. Furthermore, they could serve as an objective
method for risk stratification in clinical trials. However, to
translate this potential into proven clinical benefit, a formal
analysis of their utility is a valuable next step. Methods
like decision curve analysis (DCA) are essential to precisely
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quantify the net benefit of these models in specific clinical
decision-making contexts and to guide their responsible im-
plementation [22].

Several factors may influence the performance of diagnos-
tic models, including sample size, patient heterogeneity,
and the technologies used for biomarker assessment. In
this study, patient cohorts were derived from a single cen-
ter, which may limit generalizability. Additionally, the
use of high-sensitivity immunoassays for biomarker de-
tection likely contributed to the enhanced performance of
TAGALAD and GAP_TALAD, but such methods may not
be universally accessible [23]. Patient heterogeneity, such
as differences in HCC etiology (e.g., HBV, HCV, non-
alcoholic fatty liver disease [NAFLD]), poses another chal-
lenge, as biomarker levels and disease progression can vary
significantly across populations [24]. Addressing these fac-
tors in future studies will be crucial for validating the clin-
ical applicability of these models.

The findings of this study align with the broader trend of
integrating multi-omics data into diagnostic models. For
instance, emerging research has shown that incorporating
genomic, proteomic, and metabolomic data can further en-
hance the diagnostic accuracy of HCC prediction models
[25]. Future studies should explore the potential of combin-
ing such data with TAGALAD and GAP_TALAD to cre-
ate even more robust diagnostic tools. Furthermore, lon-
gitudinal studies are warranted to evaluate the utility of
these models in HCC screening programs and their ability
to monitor disease progression or recurrence.

Beyond their analytical superiority, the robust performance
of TAGALAD and GAP_TALAD holds significant clini-
cal implications for the management of HCC. By enabling
earlier and more accurate diagnosis, these multi-biomarker
models are poised to directly impact surgical decision-
making, expanding the cohort of patients identified at a cu-
rative stage and improving their eligibility for interventions
such as surgical resection or liver transplantation. Further-
more, their enhanced precision can improve current surveil-
lance programs for high-risk populations, enabling more ef-
fective patient stratification. This could further reduce un-
necessary invasive procedures while accelerating diagno-
sis for those in need. Ultimately, integrating these models
into clinical pathways holds the potential to significantly
improve patient survival rates and optimize resource utiliza-
tion within healthcare systems.

Limitations and Future Directions

Despite the promising results, this study has several limita-
tions that should be acknowledged. Firstly, the retrospec-
tive, single-center design is a significant constraint. Our
cohort is derived from a Chinese population, where HBV
infection is the primary etiological factor for HCC, as re-
flected in our data. Consequently, while the high perfor-
mance of our models is robust in this context, it may not
be directly generalizable to other populations, particularly

those in Western countries, where HCC is more often driven
by HCV or NAFLD. This etiological difference is crucial,
as biomarker performance can vary significantly across dif-
ferent disease contexts. We acknowledge that external val-
idation is essential. Therefore, our future work will pri-
oritize the external validation of these models through a
prospective, multi-center study. This future research will
be intentionally designed to recruit diverse international co-
horts, including patients from Western countries, to specifi-
cally assess the models’ performance in populations with
HCV- and NAFLD-predominant HCC. Such geographic
and etiological validation is essential before these models
can be recommended for widespread clinical adoption.

Secondly, while our overall sample size was adequate, the
numbers within certain subgroups were too small for a more
detailed analysis. This limitation restricted the assessment
of the models’ performance in less common HCC etiologies
or specific patient strata, representing an area for future in-
vestigation with larger cohorts.

Additionally, the study intentionally focused on widely
available and cost-effective biomarkers, excluding novel
markers such as circulating tumor DNA (ctDNA), microR-
NAs, or extracellular vesicles [26]. These emerging mark-
ers offer the potential for highly-specific, non-invasive di-
agnosis by detecting tumor-specific genetic and epigenetic
alterations [27]. For instance, ctDNA analysis can identify
somatic mutations and aberrant methylation patterns unique
to the tumor, providing a liquid biopsy that may comple-
ment or even surpass traditional serological tests in terms
of specificity [28]. However, their clinical integration faces
several challenges, including higher costs, the need for spe-
cialized infrastructure and bioinformatics expertise, and a
lack of standardized protocols. Therefore, this study was
designed to optimize the utility of biomarkers already inte-
grated into existing diagnostic pathways. Looking forward,
future research should focus on integrating these emerg-
ing omics-based markers into models like TAGALAD and
GAP_TALAD. This approach could create a multi-tiered
diagnostic strategy, where our models serve as robust ini-
tial screening tools, and more advanced tests like ctDNA
analysis are employed for indeterminate cases or to moni-
tor treatment response, thereby maximizing both diagnostic
accuracy and resource utilization.

Conclusions

In summary, the findings highlight the superior diagnos-
tic performance of TAGALAD and GAP _TALAD com-
pared to GALAD and single biomarkers in detecting HCC
across various patient subgroups. By integrating multiple
biomarkers and clinical variables, these models offer a more
comprehensive approach to HCC diagnosis. These mod-
els have the potential to transform HCC management by
enabling early detection, improving diagnostic precision,
and supporting personalized treatment strategies. However,
further validation through larger, multi-center studies and
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the exploration of novel biomarkers is necessary to eluci-
date their clinical potential.
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