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AIM: This study aims to develop and externally validate machine-learning models that effectively predict the risk and severity of post-
operative symptoms one week following mandibular third molar extractions.

METHODS: This retrospective cohort study included 321 patients (18-35 years old) who underwent lower third-molar surgery. Demo-
graphics, Pell-Gregory vertical (PGV) and Pell-Gregory level (PGL) classifications, surgical variables, and day-7 pain visual analogue
scale (VAS) were recorded for all participants. The data were randomly divided into training (70%) and validation (30%) datasets. Five
machine-learning algorithms—Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGBoost), Random Forest (RF), Deci-
sion Tree (DT), and Neural Network (NNET)—were developed using nested cross-validation. Model performance was assessed through
area under the receiver operating characteristic (AUROC) values, Brier scores, and calibration slopes, with a nomogram constructed from
the best-performing model.

RESULTS: GBM achieved the highest discrimination on the validation dataset with an AUROC 0f 0.687 (95% CI, 0.624-0.744), followed
by the Neural Network (AUROC = 0.677). The GBM model yielded a calibration slope of 0.98 and a Brier score of 0.225, indicating
excellent predictive accuracy. However, the top six predictors were found to be operative time, mouth opening, PGV, PGL, smoking,
and preoperative symptoms. The GBM model, which underlies the nomogram, achieved an area under the curve (AUC) value of 0.666,
indicating its discrimination capability. Additionally, the calibration curve confirmed the model’s accuracy, and the decision curve
analysis (DCA) suggested that the nomogram provides clinically promising potential for effective risk stratification.

CONCLUSIONS: A GBM-based nomogram provides moderate yet clinically useful discrimination for healthy adults aged 18-35 years
at risk for severe early symptoms after third-molar extraction. However, this approach requires external validation in older or medically
complex patients before it is recommended for clinical predictions.
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Recent advances in machine learning (ML) have demon-

strated significant potential in predicting postoperative out-
Introduction comes across various medical disciplines [5]. ML algo-
rithms have been effectively employed to develop pre-
dictive models that anticipate postoperative complications
[5,6]. Deep learning methods have been utilized to assess
surgical difficulty in extracting impacted M3Ms [7]. These
algorithms offer a promising framework for crafting pre-
dictive models that enable personalized treatment plans and
enhance clinical outcomes. Such models can significantly
inform clinical decision-making, optimize resource alloca-
tion, and ultimately result in better patient management and
overall outcomes [8]. Moreover, the establishment of ML-
based predictive nomograms offers an innovative approach
in medicine [9], providing intuitive and individualized risk
assessments through visually accessible tools.

The surgical extraction of mandibular third molars (M3Ms),
often indicated for clinical conditions such as impaction
and recurrent infections, is a fundamental aspect of oral and
maxillofacial surgery [1,2]. Although routinely performed,
this procedure is commonly associated with postoperative
complications, including pain, swelling, trismus, and alve-
olar osteitis, that can significantly impact a patient’s qual-
ity of life [3,4]. Accurately predicting the severity of these
symptoms could enhance postoperative management and
overall patient outcomes.
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following M3M extraction has been guided by clinical ex-
perience and observational studies, emphasizing radiolog-
ical, anatomical, and intraoperative factors [11,12]. How-
ever, these traditional approaches often lack the precision
and objectivity that ML models can offer. Although some
research has incorporated these factors to address extrac-
tion difficulty, there remains a need to compare various ML
algorithms in terms of predictive accuracy. By integrat-
ing ML techniques with radiographic assessments and clin-
ical data, more accurate models can be developed to predict
the severity of postoperative symptom severity following
M3Ms extractions, thereby improving treatment planning
and patient outcomes.

This study aims to leverage the potential of ML to develop a
robust predictive model for evaluating the severity of post-
operative symptoms following M3M extractions. By com-
paring the performance of various ML algorithms, we seek
to identify the most effective approach and create a clin-
ically applicable, user-friendly nomogram. The findings
seek to contribute to the advancement of personalized oral
healthcare by facilitating more informed surgical planning
and improving patient care.

Methods
Study Design and Population

This study employed a retrospective cohort design to de-
velop and evaluate an ML-based predictive model for as-
sessing the risk of postoperative symptom severity (PSS)
following M3Ms extractions. The cohort comprised 321
patients who underwent M3M extractions at the Depart-
ment of Stomatology, Ruijin Hospital, Shanghai Jiao Tong
University School of Medicine, China, between 1 June
2022 and 30 April 2023. The study protocol was rigorously
reviewed and approved by the Institutional Ethics Com-
mittee of Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine (Approval No: ruijin-eth-2023-268),
ensuring compliance with ethical guidelines and the pro-
tection of patient confidentiality. Informed consent was
obtained from all participants before their inclusion in the
study.

Inclusion and Exclusion Criteria

The inclusion criteria for patient recruitment were as fol-
lows: patients aged between 18 and 35 years, scheduled for
elective extraction of one or both mandibular third molars
under local anaesthesia, classified as American Society of
Anesthesiologists (ASA) physical status I or 11, and those
capable of providing written informed consent and complet-
ing all follow-up assessments.

Exclusion criteria during patient selection were set as fol-
lows:

Presence of systemic disorder increasing the ASA status to
III or higher, including but not limited to:

* Cardiovascular disease requiring monitoring, implanted
cardiac devices, or anti-arrthythmic therapy.

» Uncontrolled endocrine disease (e.g., HbAlc >8% or
insulin-dependent diabetes).

» Coagulopathy or ongoing anticoagulant treatment that
cannot be interrupted for >6 hours.

* Chronic renal, hepatic, or respiratory failure.

» Immunodeficiency or ongoing chemotherapy.

* Pregnancy or lactation.

+ Diagnosis of acute pericoronitis or other active oral in-
fection.

» Use of analgesics, anti-inflammatory drugs, or antibi-
otics within 48 hours pre-surgery.

* History of mandibular trauma or previous jaw surgery.

» Known allergy to local anaesthetics.

All 321 participants included in the final model satis-
fied these criteria, and none required intraoperative cardiac
monitoring.

Data Collection and Variables

Demographic, anatomical, radiographic, and operative data
were collected for all participants: Demographic variables
included gender, age, body mass index (BMI), and smok-
ing status. Tooth-specific variables, including root mor-
phology, root number, and root curve, were also recorded.
Anatomical variables included mouth opening, measured as
the interincisal distance (in mm) during surgical positioning
[13].

Radiographic variables were subcategorized into tooth po-
sition and tooth-specific features. Tooth position was deter-
mined using Winter’s classification (vertical, mesioangular,
horizontal, or distoangular) and the Pell-Gregory classifica-
tion system [14]. Root number was defined as single, dou-
ble, and triple roots.

Operative variables included the medical history of peri-
coronitis, operative time, type of surgical procedure, flap
design, and surgeon’s experience level. The presence or ab-
sence of preoperative pericoronitis symptoms was recorded
as part of medical history. Procedure type was categorized
as elevator/forceps alone, bone removal and/or tooth sec-
tioning, or combined bone removal and tooth sectioning.
The flap design was categorized as none, relaxing, or tri-
angular. Surgical experience or expertise was defined the
number of years since the completion of residency and cat-
egorized as 0-5 years, 5-10 years, or >10 years [13]. The
observed operative time was defined as the interval between
the initial incision and the placement of the final suture
[15]. Cone-beam computed tomography (CBCT)-derived
metrics, such as inferior alveolar nerve (IAN)-root distance
and crown-integrity grading were not analyzed, as CBCT
imaging was not routinely conducted for all patients.

Surgical Procedure

Third molar extractions were performed using a standard-
ized approach established at Ruijin Hospital. Prior to
surgery, patients underwent a l-minute rinse with 0.2%
chlorhexidine mouthwash, followed by local disinfection
of the oral cavity with iodine solution. However, postop-
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erative management included a 2-day course of oral antibi-
otics, comprising cefprozil 0.5 g (Yinlishu® Cefprozil Dis-
persible Tablets, 0.25 g per tablet; National Drug Approval
No. H20052514; Guangzhou Baiyunshan Pharmaceutical
Group Co., Ltd., Guangzhou, China) in combination with
metronidazole 1.2 g (Wuyao® metronidazole tablets, 0.2 g
per tablet; National Drug Approval No. H42021947; Far-
mito (China) Co., Ltd., Wuhan, China). Sutures were usu-
ally removed 7 days after surgery [16]. A preoperative as-
sessment of panoramic radiographs was performed by an
experienced surgeon blinded to the clinical outcomes.

QOutcome Assessment

Among the available evaluation instruments, the post-
operative symptom severity (PoSSe) questionnaire is
specifically designed for mandibular third-molar surgery
and shows greater sensitivity to acute postoperative changes
compared to general tools such as the medical outcomes
study (MOS) item short from health survey, the short form-
36 health survey (SF-36) or oral health impact profile-14
(OHIP-14) [17-19]. Therefore, PoSSe was adopted as the
primary outcome measure in the present study. The PoSSe
approach was administered on postoperative day 7 when the
sutures were removed. Patients were divided into high-risk
and low-risk groups based on median total PoSSe scores
[17,20]. Patients with PoSSe scores strictly above the me-
dian were classified as the high-risk group (value = 1), while
those with scores equal to or below the median were clas-
sified as the low-risk group (value = 0). A higher PoSSe
score indicates more severe postoperative symptoms.

Machine Learning Model Development

To develop and validate the predictive models, the dataset
was randomly partitioned into a training set (n = 224, 70%)
and a validation set (n = 97, 30%). Five machine learning
algorithms were utilized to develop models predicting post-
operative symptom severity risk (PSSR): Gradient Boosting
Machine (GBM), Extreme Gradient Boosting (XGBoost),
Random Forest (RF), Decision Tree (DT), and Neural Net-
work (NNET). The performance of the models was evalu-
ated using the area under the receiver operating characteris-
tic (AUROC) curve, along with sensitivity, specificity, and
accuracy. These assessment indicators were selected a pri-
ori based on documented performance in similar medical-
predictive tasks and their diverse bias-variance profiles.
Deep-learning and distance-based classifiers were excluded
due to the high risk of over-fitting and poor calibration as-
sociated with small, heterogeneous datasets.

Statistical Analyses

All statistical analyses were performed using R software,
version 4.2.1 (R Foundation for Statistical Computing, Vi-
enna, Austria). The ML models were developed using
the R packages “caret”, “el071”, “randomforest”, “net”,
“gbm?”, part”, “GLM?”, and “pROC”, while the “rms” pack-
ages were used for constructing the nomogram. Model per-
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formance was assessed based on sensitivity, specificity, and
accuracy, F1 score, and Brier score. Calibration plots and
decision curve analysis (DCA) were generated with 1000-
sample bootstrapping using the rms and rmda R packages.
All statistical tests were two-sided, and a p-value of <0.05
was considered statistically significant.

Categorical variables were compared with the Pearson y?
test. For 2 x 2 contingency tables where all expected fre-
quencies were >5, Pearson’s x? test was applied without
Yates’ continuity correction. If any expected frequency
was <5, either Yates’ correction or Fisher’s exact test was
used, as appropriate. Normality of continuous variables
was assessed employing the Shapiro—Wilk test (o = 0.05).
Skewed variables were expressed as median with interquar-
tile range (IQR) and compared using the Mann—Whitney U
test.

For ML model development, the dataset was randomly
stratified into two groups: the training (70%) and valida-
tion (30%) sets. This random splitting was repeated until
an equal distribution of patient characteristics was achieved
across both sets. Consequently, five ML algorithms were
developed: GBM, XGBoost, RF, DT, and NNET. During
the training process, tuning was considered for ML-based
models to minimize overfitting and model hyperparameters
were optimized through 5-fold cross-validation.

Then, each model was trained to predict the risk of PSSR
using the training data and performance indicators, includ-
ing AUROC, sensitivity, specificity, and overall accuracy,
were all calculated in the validation set. Models with AUR
values closer to 1 were considered better in classification
performance. Afterwards, based on the best-performing
model, a nomogram was created to provide individualized
risk predictions for those undergoing M3M extractions,
thereby facilitating decision-making and improving postop-
erative management.

Results

Assessment of Baseline Characteristics Across the Study
Cohort

The final study cohort comprised 321 participants with a
mean age of 23.4 4+ 4.2 years (range: 18-35); no patients
older than 35 years were included. The study cohort in-
cluded 64.5% female participants, resulting in a male-to-
female ratio of about 1:1.82 (Table 1). Severe postopera-
tive symptoms were observed in 155 patients, representing
48.3% of the study population. Among these patients, the
average age was 22.15 & 10.49 years, with an age range of
18 to 35 years (Table 1). The mean duration of the surgical
procedure was 16.04 minutes, with a median of 14.83 min-
utes. The study cohort predominantly consisted of healthy
young adults (median age: 23 years), with a balanced dis-
tribution of sex and no significant inter-group demographic
differences. However, several clinical and surgical vari-
ables (e.g., smoking status, impaction classification, flap
design) differed significantly between the two groups (Ta-
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Table 1. Baseline characteristics of all the patients undergoing third molar surgery.

Variable PoSSe=0 PoSSe =1 x2/Z  p-value
Sample (n) 166 155 NA NA
Gender (male, %) 67 (40.0%) 47 (30.0%) 3.52 0.060
Smoke (yes, %) 35 (21%) 53 (34%) 6.92 0.008
Age (<25 years, %) 74 (45%) 57 (37%) 2.02 0.155
BMI (%), kg/m? 1.87 0.394
<185 43 (26%) 50 (32%)
18.5-24.9 60 (36%) 55 (35%)
>25 63 (38%) 50 (32%)
Pell-Gregory vertical, No. (%) 7.07 0.029
I 123 (74%) 118 (76%)
11 35 (21%) 20 (13%)
1 8 (4.8%) 17 (11%)
Pell-Gregory horizontal, No. (%) 10.04 0.007
A 53 (32%) 29 (19%)
B 91 (55%) 90 (58%)
C 22 (13%) 36 (23%)
Winter’s, No. (%) 2.99 0.224
Mesioangular 48 (29%) 32 (21%)
Horizontal 75 (45%) 80 (52%)
Vertical 43 (26%) 43 (28%)
Root curvature (n, %) 0.22 0.634
One root 128 (77%) 116 (75%)
More than one root 38 (23%) 39 (25%)
Root morphology (n, %) 0.70 0.706
Conical 113 (68%) 104 (67%)
Spherical 10 (6.0%) 13 (8.4%)
Bifurcation 43 (26%) 38 (25%)
Preoperative symptoms (n, %) 6.26 0.012
No 61 (37%) 37 (24%)
Yes 105 (63%) 118 (76%)
Flap design (n, %) 7.03 0.030
No flap 21 (13%) 14 (9.0%)
Relaxing incision 46 (28%) 27 (17%)
Triangular flap 99 (60%) 114 (74%)
Procedure type (n, %) 8.88 0.012
Elevator/forceps alone 52 (31%) 28 (18%)
Bone removal/tooth sectioning 57 (34%) 54 (35%)
Bone removal + tooth sectioning 57 (34%) 73 (47%)
Surgical experience (n, %) 0.68 0.713
>10 years 73 (44%) 73 (47%)
5-10 years 63 (38%) 52 (34%)
<5 years 30 (18%) 30 (19%)
Number of roots, (n, %) 2.12 0.347
Single root 42 (25%) 45 (29%)
Double roots 117 (70%) 99 (64%)
>three roots 7 (4.2%) 11 (7.1%)
Mouth opening (cm), median (IQR) 4.29 (0.49) 4.14 (0.50) 2.63 0.009

Operation time (minutes), median (IQR)  13.34 (13.09)  16.90 (14.04) -3.57  <0.001

Abbreviations: NA, not applicable; BMI, body mass index; PoSSe, post-operative symptom
severity; IQR, interquartile range.

*Categorical variables: For 2 X 2 contingency tables with all expected frequencies >5, Pearson’s
x? test was applied without Yates’ continuity correction. When any expected frequency was <5,
Yates’ correction or Fisher’s exact test was used, as appropriate. Continuous variables: Student’s
t-test if Shapiro—Wilk p > 0.05; otherwise, Mann—Whitney U.

Note: Patients with PoSSe scores strictly greater than the total median were classified as the
high-risk group (value = 1); those with scores equal to or below the median were classified as the
low-risk group (value = 0). This single threshold was applied consistently to both the training
and validation sets. p-value was derived from the bivariate association analyses between each of

the study variables and PoSSe.
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Table 2. Baseline characteristics of the patients in the training data set after third molar surgery.

Variable PoSSe =0 PoSSe =1 x%/Z  p-value
Sample (n) 112 112 NA NA
Gender (male, %) 41 (37%) 33 (29%) 1.29 0.250
Smoke (yes, %) 22 (20%) 38 (34%) 5.82 0.015
Age (<25 years, %) 56 (50%) 44 (39%) 2.60 0.107
BMI (%), kg/m? 0.31 0.856
<18.5 33 (29%) 35 (31%)
18.5-24.9 42 (38%) 38 (34%)
>25 37 (33%) 39 (35%)
Pell-Gregory vertical, No. (%) 4.59 0.101
I 84 (75%) 89 (79%)
11 21 (19%) 11 (9.8%)
I 7 (6.3%) 12 (11%)
Pell-Gregory horizontal, No. (%) 5.68 0.058
A 34 (30%) 22 (20%)
B 64 (57%) 65 (58%)
C 14 (13%) 25 (22%)
Winter’s, No. (%) 1.37 0.505
Mesioangular 30 (27%) 23 (21%)
Horizontal 52 (46%) 59 (53%)
Vertical 30 (27%) 30 (27%)
Root curvature (n, %) 0.37 0.541
One root 85 (76%) 81 (72%)
More than one root 27 (24%) 31 (28%)
Root morphology (n, %) 3.50 0.174
Conical 80 (71%) 75 (67%)
Spherical 4 (3.6%) 11 (9.8%)
Bifurcation 28 (25%) 26 (23%)
Preoperative symptoms (n, %) 5.10 0.024
No 46 (41%) 30 (27%)
Yes 66 (59%) 82 (73%)
Flap design (n, %) 8.24 0.016
No flap 12 (11%) 10 (8.9%)
Relaxing incision 34 (30%) 17 (15%)
Triangular flap 66 (59%) 85 (76%)
Procedure type (n, %) 6.63 0.036
Elevator/forceps alone 36 (32%) 20 (18%)
Bone removal/tooth sectioning 39 (35%) 42 (38%)
Bone removal + tooth sectioning 37 (33%) 50 (45%)
Surgical experience (n, %) 0.28 0.870
>10 years 51 (46%) 50 (45%)
5-10 years 42 (38%) 40 (36%)
<5 years 19 (17%) 22 (20%)
Number of roots, (n, %) 0.76 0.683
Single root 33 (29%) 31 (28%)
Double roots 74 (66%) 73 (65%)
>three roots 5 (4.5%) 8 (7.1%)
Mouth Opening (cm), median (IQR) 4.28 (0.49) 4.15(0.48) 1.94 0.053

Operation time (minutes), median (IQR)  12.58 (11.56)  16.54 (13.42) -3.68 <0.001
*Categorical variables: For 2 x 2 contingency tables with all expected frequencies >5, Pearson’s

x? test was applied without Yates’ continuity correction. When any expected frequency was <5,
Yates’ correction or Fisher’s exact test was used, as appropriate. Continuous variables: Student’s
t-test if Shapiro—Wilk p > 0.05; otherwise, Mann—Whitney U.

Note: Patients with PoSSe scores strictly greater than the total median were classified as the
high-risk group (value = 1); those with scores equal to or below the median were classified as the
low-risk group (value = 0). This single threshold was applied consistently to both the training
and validation sets.

p-value was derived from the bivariate association analyses between each of the study variables
and PoSSe.

ble 1) and were therefore included in the multivariable pre-  Machine Learning Model Performance

dictive models described below. A total of 224 patients were included in the training set

to establish the nomogram-based predictive model, while
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Table 3. Baseline characteristics of the patients in the test data set undergoing third molar surgery.

Variable PoSSe =0 PoSSe =1 x2/Z  p-value
Sample (n) 54 43 NA NA
Gender (male, %) 26 (48%) 14 (33%) 2.40 0.121
Smoke (yes, %) 13 (24%) 15 (35%) 1.36 0.243
Age (<25 years, %) 18 (33%) 13 (30%) 0.10 0.744
BMI (%), kg/m? 5.94 0.051
<18.5 10 (19%) 15 (35%)
18.5-24.9 18 (33%) 17 (40%)
>25 26 (48%) 11 (26%)
Pell-Gregory vertical, No. (%) 4.03 0.133
I 19 (35%) 7 (16%)
11 27 (50%) 25 (58%)
I 8 (15%) 11 (26%)
Pell-Gregory horizontal, No. (%) 4.90 0.086
A 39 (72%) 29 (67%)
B 14 (26%) 9 (21%)
C 1(1.9%) 5(12%)
Winter’s, No. (%) 1.87 0.393
Mesioangular 18 (33%) 9 (21%)
Horizontal 23 (43%) 21 (49%)
Vertical 13 (24%) 13 (30%)
Root curvature (n, %) 0.04 0.827
One root 43 (80%) 35 (81%)
More than one root 11 (20%) 8 (19%)
Root morphology (n, %) 1.36 0.506
Conical 33 (61%) 29 (67%)
Spherical 6 (11%) 2 (4.7%)
Bifurcation 15 (28%) 12 (28%)
Preoperative symptoms (n, %) 1.80 0.179
No 15 (28%) 7 (16%)
Yes 39 (72%) 36 (84%)
Flap design (n, %) 1.13 0.568
No flap 9 (17%) 4(9.3%)
Relaxing incision 12 (22%) 10 (23%)
Triangular flap 33 (61%) 29 (67%)
Procedure type (n, %) 2.87 0.239
Elevator/forceps alone 16 (30%) 8 (19%)
Bone removal/tooth sectioning 18 (33%) 12 (28%)
Bone removal + tooth sectioning 20 (37%) 23 (53%)
Surgical experience (n, %) 1.73 0.422
>10 years 22 (41%) 23 (53%)
5-10 years 21 (39%) 12 (28%)
<5 years 11 (20%) 8 (19%)
Number of roots, (n, %) 4.28 0.117
Single root 9 (17%) 14 (33%)
Double roots 43 (80%) 26 (60%)
>three roots 2 (3.7%) 3(7.0%)
Mouth Opening (cm), median (IQR) 4.31(0.47) 4.12 (0.56) 1.77 0.080

Operation time (minutes), median IQR)  15.93 (14.09)  17.68 (15.08) —1.12 0.265
Data is presented as median (IQR) or numbers, with percentages in parentheses.

*Categorical variables: For 2 x 2 contingency tables with all expected frequencies >5, Pearson’s
x? test was applied without Yates’ continuity correction. When any expected frequency was <5,
Yates’ correction or Fisher’s exact test was used, as appropriate. Continuous variables: Student’s
t-test if Shapiro—Wilk p > 0.05; otherwise, Mann—Whitney U.

Note: Patients with PoSSe scores strictly greater than the total median were classified as the
high-risk group (value = 1); those with scores equal to or below the median were classified as the
low-risk group (value = 0). This single threshold was applied consistently to both the training
and validation sets.

p-value was derived from the bivariate association analyses between each of the study variables
and PoSSe.

97 patients were included in the validation set to evaluate ~ 44.6% of patients were under 25 years, 33.0% were male,
model performance (Table 2). Among the training dataset, 73.2% were nonsmokers, and 14.3% were classified as Pell-
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Fig. 1. Receiver operating characteristic (ROC) curve for five machine learning algorithms. GBM, Gradient Boosting Machine;

XGBoost, Extreme gradient boosting; AUC, area under the curve.

Table 4. Comparison of predictive performance across the five types of machine learning algorithms in the validation sets.

Methods AUC (95% CI) Sensitivity ~ Specificity =~ Accuracy  Flscore  Brier
GBM 0.687 (0.624-0.744) 0.698 0.630 0.600 0.645 0.225
XGBoost 0.635 (0.594-0.696) 0.581 0.556 0.510 0.543 0.248
Random Forest ~ 0.663 (0.617-0.716) 0.605 0.648 0.578 0.591 0.232
Decision Tree 0.568 (0.524-0.674) 0.884 0.259 0.487 0.628 0.252
Neural Network  0.677 (0.614-0.726) 0.837 0.463 0.554 0.667 0.243

Table 5. Predictive performance of all five machine-learning algorithms after using the six SHAP-derived predictors in internal
cross-validation (validation dataset).

Methods AUC (95% CI) Sensitivity ~ Specificity =~ Accuracy  F1score  Brier
GBM 0.666 (0.602—0.728) 0.689 0.618 0.650 0.634 0.228
XGBoost 0.622 (0.580-0.682) 0.560 0.548 0.553 0.527 0.251
Random Forest ~ 0.645 (0.599-0.700) 0.595 0.630 0.614 0.578 0.236
Decision Tree 0.550 (0.508-0.654) 0.870 0.245 0.522 0.617 0.255
Neural Network  0.660 (0.600-0.714) 0.820 0.452 0.615 0.653 0.246

Notes: Cut-offs were chosen by maximizing Youden’s index; 1000 sample bootstraps were used for the

Cls.

Gregory ramus class II (Table 2). The incidence of serious
postoperative symptoms in the training dataset was 50.0%
and 44.3% in the testing dataset. The baseline character-
istics of the patients in the testing dataset undergoing third
molar extraction are detailed in Table 3.

Performance of Machine Learning Algorithms

The predictive performance of five machine learning algo-
rithms was evaluated for determining PSSR. The GBM al-
gorithm demonstrated superior performance, achieving the
highest AUROC curve value of 0.687 (Fig. 1).
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The GBM outperformed the other four algorithms when
all variables were incorporated (Fig. 1, Table 4). Even
after restricting the models to the six predictors selected
through SHapley Additive exPlanations (SHAP) (Fig. 2),
GBM continued to exhibit the highest discriminative per-
formance, with an area under the curve (AUC) of 0.666
(Table 5).
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Fig. 2. SHapley Additive exPlanations (SHAP) values in a beeswarm plot for GBM. SHAP values in a beeswarm plot summarize

the contribution of each feature to the model’s predictions. Each point on the plot represents the SHAP value of a single observation for

a particular feature. The x-axis represents the SHAP value, which quantifies the impact of the feature on the model output. A positive
SHAP value indicates that the feature value for that observation increased the prediction, while a negative SHAP value indicates that it
decreased the prediction. The features are ranked in descending order of their overall importance, determined by the average absolute
SHAP value across all observations (represented by the values on the y-axis to the right of each feature’s beeswarm). PGV, Pell-Gregory

vertical; PGL, Pell-Gregory level.

SHAP Value of Variables in GBM Machine Learning
Algorithms

Fig. 2 displays SHAP values in a beeswarm plot, illustrat-
ing the impact of each feature on the output of the GBM
model predicting PSSR. Among the assessed variables, ‘op-
eration time’ exhibited the most significant influence on the
model’s prediction, with longer duration consistently asso-
ciated with higher predicted risk scores. Across all ensem-
ble models, the most influential predictors were impaction
depth, operative time, and mouth opening. In contrast, fea-
tures such as ‘number of root’, ‘age’, and ‘root of curve’
showed comparatively lower impact, as indicated by their
smaller average absolute SHAP values and distributions
more tightly clustered near zero (Fig. 2). Based on these
findings, six key predictors were selected for constructing
the nomogram (Fig. 3).

All models showed acceptable calibration, with the GBM
model exhibiting the most favorable outcomes. GBM

yielded calibration slopes close to ideal (0.98) and showed
the lowest Brier score (0.225), suggesting strong agreement
between predicted and observed values. Comparative per-
formance metrics for the five ML algorithm models on the
validation set are detailed in Table 4 and Fig. 1. Among
them, the GBM model demonstrated the highest perfor-
mance in predicting PSSR, yielding a sensitivity of 0.698,
specificity of 0.630, F1 score of 0.645, Brier score of 0.225,
and overall accuracy of 0.600. Based on these findings, the
GBM model was selected as the final predictive model (Ta-
ble 4). Model calibration was further quantified using the
Brier score, where a lower value indicates improved predic-
tion reliability (Fig. 4). Additionally, the predictive perfor-
mance of all five machine-learning algorithms, using the six
SHAP-derived predictors in internal cross-validation (test
dataset), is shown in Table 5.
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Fig. 3. Nomogram for predicting postoperative symptom severity following mandibular third molar extractions using GBM.

PSSR, postoperative symptom severity risk.

Development of a Predictive Nomogram

Utilizing the GBM model, a predictive nomogram was
constructed to estimate the individual probability of expe-
riencing severe postoperative symptoms following M3M
surgery. The nomogram integrates key clinical variables,
including operative time, mouth opening, Pell-Gregory
classification, and preoperative symptomatology, offering
a personalized risk assessment tool (Fig. 3). The nomo-
gram was based on a compact GBM model containing six
predictors that together accounted for over 80% of the to-
tal SHAP importance. The GBM model, which underlies
the nomogram, achieved an AUC value of 0.666, indicating
its discrimination capability. The nomogram demonstrated
excellent calibration (Fig. 4) and yielded favorable net ben-
efit across clinically relevant threshold probabilities, as il-
lustrated by decision-curve analysis (Fig. 5), underscoring
its practical utility in guiding clinical decision-making.
How to use the nomogram guide:

(1) Identify the patient’s category or numerical value on
each predictor axis.

(2) Draw a vertical line upward to intersect the “Points”
scale.

(3) Sum the individual points to obtain the “Total Points”.
(4) Draw a vertical line downward from the “Total Points”
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to assess the predicted probability of a high PoSSe score
(>60).

Discussion

In this study, a machine learning-based analysis of patient
data was conducted to develop a personalized and accurate
system for predicting postoperative symptoms in patients
undergoing M3Ms. A comparison of ML algorithms iden-
tified that the GBM model demonstrates the highest pre-
dictive performance. To support clinical application of the
model, a nomogram was subsequently established based on
GBM to estimate the individual probability of PSSR.

Mobilio et al. [21] found that surgical duration signifi-
cantly influences acute postoperative symptoms after lower
third molar extraction. Similarly, Farhadi et al. [22]
demonstrated that the difficulty index is useful in predict-
ing the probability of postoperative infection after impacted
mandibular third molar surgery. Furthermore, Luo et al.
[23] highlighted that factors such as preoperative panoramic
radiographs, computed tomography (CT) imaging, patient
age, the experience of the surgeon, and postoperative bleed-
ing can predict postoperative complications in M3M extrac-
tions. Moreover, Kocyigit et al. [24] developed an arti-
ficial intelligence-based system to estimate postoperative
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Fig. 4. Calibration plot for predicting postoperative symptom severity following mandibular third molar extractions using GBM.

A bootstrap-bias—corrected calibration plot is now presented. Intercept =—0.01 (ideal = 0); slope = 0.96 (ideal = 1). Hosmer—Lemeshow

X2 =6.21, p = 0.41; Brier score = 0.210.

discomfort after impacted third molar surgery, indicating
the potential of machine learning algorithms in predicting
postoperative outcomes. Overall, these findings provide a
comprehensive understanding of the multifaceted nature of
postoperative symptoms and support the integration of ma-
chine learning algorithms for predicting the postoperative
severity of symptoms.

The SHAP value analysis provided valuable insights into
the factors affecting the model’s predictions. Notably, op-
eration time emerged as the most prominent variable, with
longer duration consistently associated with an increased
predicted risk of PSSR, aligning with findings from a study
by Qiao et al. [18]. Other variables, albeit less consistent,
including ‘Mouth Opening’, ‘Pell-Gregory vertical classi-
fication’, and ‘Pell-Gregory horizontal classification’ also
contributed substantially to the model’s predictions. How-
ever, the variability in their impact, as reflected by the wider
distribution of their SHAP values, suggests potential inter-
actions with other features that necessitate further investi-
gation.

In contrast, features such as age and number of roots
showed a relatively smaller overall impact on the model
predictions. While these features may still play a crucial
role in model accuracy, their individual contributions were
less pronounced in this dataset. This does not alleviate their
clinical significance; rather, it suggests that their influence
on PSSR may be primarily mediated through interactions
with other variables or may become more apparent within
specific subgroups of patients. Therefore, further studies
are warranted to elucidate these interactions and optimize
their role in predictive models.

Machine learning algorithms have been increasingly ap-
plied in dentistry to predict various postoperative outcomes
[25,26]. In our study, five different machine learning meth-
ods, such as GBM, XGBoost, RF, DT, and NNET, were
evaluated to assess their predictive performance. GBM
demonstrated the highest predictive accuracy, effectively
handling complex data relationships. XGBoost offers im-
proved computational efficiency and built-in regulariza-
tion, which helps mitigate overfitting but requires care-
ful hyperparameter tuning and may be sensitive to noisy
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Fig. 5. Decision curve analysis (DCA) plot for predicting postoperative symptom severity following mandibular third molar
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data [27]. RF is robust to overfitting and can handle large
datasets; however, it may perform poorly with noisy data
and can be slow to train on very large datasets [28]. DT
models are simple to understand and can handle both nu-
merical and categorical data, but they are prone to over-
fitting, especially with deep trees, and can be sensitive to
small variations in the data. NNETs can capture complex,
non-linear relationships and learn effectively from large
datasets; however, they usually require substantial train-
ing data and are particularly prone to overfitting when ap-
plied to smaller datasets. Notably, the predictive model
established in this study was based on a cohort of healthy
young adults (ASA I-II, 18-35 years); therefore, its appli-
cability to paediatric, middle-aged, or medically complex
patients remains uncertain. Additional external validation
in broader populations is required before the model can be
adopted for widespread clinical use.

Despite several promising outcomes, our study has some
limitations. First, all data were sourced exclusively from
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a single institution, Ruijin Hospital, potentially limiting
the generalizability of our findings to other populations or
healthcare settings, where surgical practices and patient de-
mographics may differ. Furthermore, the exclusion of vari-
ables such as IAN-root distance and crown integrity, due to
the lack of routine CBCT imaging, may have reduced the
model’s predictive accuracy. Subsequent studies incorpo-
rating routine CBCT imaging data are planned to evaluate
the incremental value of these variables. Second, applying
multiple complex algorithms to a relatively small dataset in-
troduces arisk of overfitting, potentially resulting in models
that perform well on training data but poorly on external
or unseen datasets. Third, SHAP analysis provides valu-
able insights into overall variable importance; it does not
fully capture individual-level predictions or complex fea-
ture interactions. Finally, the model should not be applied
to patients with significant systemic disease (ASA >III)
or those requiring cardiac monitoring, as such individuals
were excluded from training datasets and may exhibit dif-
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ferent postoperative risk profiles. Thus, further validation
in a larger and more diverse population is warranted before
clinical implementation.

Conclusions

Comparison across distinct algorithmic families demon-
strated that gradient-boosting ensembles offer a meaning-
ful but still moderate improvement in predictive perfor-
mance over the four-alternative machine learning models
(XGBoost, Random Forest, Decision Tree and Neural Net-
work). These observations reinforce existing evidence that
tree-based boosting approaches are particularly well-suited
for clinical prediction tasks. The resulting compact GBM-
based nomogram incorporating these variables provides
patient-specific risk estimates at the point of care, assisting
clinicians in patient counselling, analgesic planning, and
scheduling postoperative follow-up.
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